JPL PUBLICATION 78-93

Evaluation of FIDC System Final Report

Robert A. Hall Mack W. Dowdy Theodore W. Price

(NASA-CR-157763) EVALUATION OF FIDC SYSTEM Final Report (Jet Propulsion Lab.) 132 p HC A07/MF A01 CSCL 21A

N78-34007

Unclas G3/85 33809

October 15, 1978

Prepared for

Department of Energy

Assistant Secretary for Conservation and Solar Applications Division of Transportation Energy Conservation

by

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
US DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 22161

The research described in this report was carried out by the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the Department of Energy through an agreement with NASA.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed or represents that its use would not infringe private owned rights.

Evaluation of FIDC System Final Report

Robert A. Hall Mack W. Dowdy Theodore W. Price

October 15, 1978

Prepared for

Department of Energy

Assistant Secretary for Conservation and Solar Applications Division of Transportation Energy Conservation by

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

ABSTRACT

A fuel vapor injector/igniter system developed by the Fuel Injection Development Corporation has been evaluated for its effect on vehicle engine performance, fuel economy, and exhaust emissions. Initially, a single cyclinder engine was operated with the vapor injector/igniter and improved combustion was inferred from the leaner operation achieved with the vapor injector/igniter. However, the improved fuel economy and emissions found during the single cylinder tests were not realized with the multicylinder engine. Multicylinder engine tests were conducted to compare the FIDC system with both a stock and a modified stock configuration. A comparison of cylinderto-cylinder equivalence ratio distribution was also obtained from the multicylinder engine tests. Finally, the multicylinder engine was installed in a vehicle, and the vehicle was tested on a chassis dynamometer to compare the FIDC system with stock and modified stock configurations. The FIDC configuration demonstrated approximately five percent improved fuel economy over the stock configuration, but the modified stock configuration demonstrated approximately twelve percent improved fuel economy.

The hydrocarbon emissions were approximately two-hundred-thirty percent higher with the FIDC system than with the stock configuration. Both the FIDC system and the modified stock configuration adversely affected driveability. In the final analysis, the FIDC system demonstrated a modest fuel savings, but with the penalty of increased emissions, and loss of driveability.

ORIGINAL PAGE IS OF POOR QUALITY

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions made by L. E. Baughman for the program management, B. B. Bonzo and M. D. Crouch for the data processing, and preparation of tables and graphs and J. A. Allison, J. A. Bryant, and R. E. Burleson for the test operations, instrumentation and data gathering.

CONTENTS

I.	SUMMAI	RY	1
II.	INTROI	DUCTION	6
III.	DESCR	IPTION OF FIDC SYSTEM	7
IV.	CFR E	NGINE TESTS	8
	Α.	DISCUSSION OF TEST RESULTS	9
	В.	IGNITION DELAY AND FLAME SPEED DATA	11
٧.	MULTI	CYLINDER ENGINE DYNAMOMETER TESTS	13
	Α.	SENSITIVITY DATA	14
	В.	CYLINDER-TO-CYLINDER DISTRIBUTION DATA	18
	С.	URBAN DRIVING CYCLE PREDICTIONS	19
VI.	DRIVI	NG CYCLE TESTS	22
VII.	APPLI	CATION OF THE FIDC SYSTEM	23
VIII.	GENER.	AL DISCUSSION	24
IX.	CONCL	USIONS AND RECOMMENDATIONS	27
APPEN	DIXES		
	Α.	CFR DATA	A-1
	В.	EC DYNAMOMETER DATA	B-1
	С.	CHASSIS DYNAMOMETER DATA	C-1

Figures

1.	FVI-LLC Schematic	28
2.	FIDC System Components	- 29
3.	FVI	30
4.	CFR Engine Mapping Tests	· - 31
5.	CFR Engine Plumbing for FIDC Tests	· - 32
6.	Fuel Consumption Versus Equivalence Ratio for the CFR Sensitivity Tests	- 33
7.	Effect of Spark Retard on Fuel Consumption for CFR Sensitivity Tests	- 34
8.	HC Emissions Versus Equivalence Ratio for CFR Sensitivity Tests	- 35
9.	Effect of Spark Retard on HC Emissions for CFR Sensitivity Tests (Baseline Configuration)	- 36
10.	Effect of Spark Retard on HC Emissions for ĈFR Sensitivity Tests (FVI Configuration)	- 37
11.	CO Emissions Versus Equivalence Ratio for CFR Sensitivity Tests	- 38
12.	NO _x Emissions Versus Equivalence Ratio for CFR Sensitivity Tests	- 39
13.	Fuel Consumption Versus NO _X Emissions for · CFR Sensitivity Tests	- 40
14.	HC Emissions Versus NO _x Emissions for CFR Sensitivity Tests	- 41
15.	Definition of Ignition Delay and Combustion Interval	- 42
16.	Definition of Ignition Delay Parameter and Flame Speed Parameter	- 43
17.	Firing and Motoring Pressure-Time Traces for CFR Test	- 44
18.	Ignition Delay Parameter and Flame Speed Parameter for CFR Test	- 45
19.	Ignition Delay Parameter Versus Spark Advance for CFR Tests	- 46
20.	Flame Speed Parameter Versus Spark Advance	- 47

21.	V-8 Engine Plumbing for FIDC Tests	48
22.	Exhaust Systems for Multicylinder Engine	49
23.	Multicylinder Engine	50
24.	Engine Operating Conditions for EC Dynamometer Tests	51
25.	Fuel Consumption Versus Equivalence Ratio for EC Dynamometer Tests	52
26.	Effect of Spark Retard on HC Emissions for EC Dynamometer Tests	53
27.	NO _X Emissions Versus Equivalence Ratio for EC Dynamometer Tests	54
28.	Fuel Consumption Versus Spark Advance for EC Dynamometer Tests	55
29.	NO _x Emissions Versus Spark Advance EC Dynamometer Tests	55
30.	Fuel Consumption Versus $\mathrm{NO}_{\mathbf{x}}$ Emissions . for EC Dynamometer Tests	56
31.	HC Emissions Versus NO _x Emissions for EC Dynamometer Tests	56
32.	Fuel Consumption Versus Equivalence Ratio for EC Dynamometer Tests	57
33.	HC Emissions Versus Equivalence Ratio for EC Dynamometer Tests	58
34.	NO _X Emissions Versus Equivalence Ratio for EC Dynamometer Tests	59
35.	Fuel Consumption Versus Spark Advance for EC Dynamometer Tests	60
36.	NO _X Emissions Versus Spark Advance for EC Dynamometer Tests	60
37.	Fuel Consumption Versus NO _X .Emissions for EC Dynamometer Tests	61
38.	HC Emissions Versus NO _x Emissions for EC Dynamometer Tests	61
39.	Comparison of System Equivalence Ratio and Carbon Balance Equivalence Ratio for EC Dynamometer Tests	. 62

40.	Equivalence Ratios (RPM = 500, BHP = 1.0)	63
41.	Cylinder-to-Cylinder Distribution of Equivalence Ratios (RPM = 1,000, BHP = 10.0)	64
42.	Cylinder-to-Cylinder Distribution of Equivalence Ratios (RPM = 1500, BHP = 33.0)	65
43.	Cylinder-to-Cylinder Distribution of Equivalence Ratios (RPM - 2000, BHP - 44.0)	66
44.	Average Equivalence Ratio for Distribution Tests on EC Dynamometer	67
45.	Standard Deviation of Equivalence Ratio for Distribution Tests on EC Dynamometer	68
46.	Vacuum and Centrifugal Advance Characteristics of Stock Distributor	69
47.	Predicted Urban Fuel Economy and NO _x Emissions (4500 lb Inertia Weight)	70
48.	Predicted HC and NO _x Emissions for Urban Driving Cycle (4500 lb Inertia Weight)	71
49.	Predicted Urban Fuel Economy and NO _x Emissions (3500 lb Inertia Weight)	72
50.	Predicted HC and NO _x Emissions for Urban Driving Cycle (3500 lb Inertia Weight)	73
51.	Urban Driving Cycle Results from Chassis Dynamometer Vehicle Tests	74
52.	Urban Driving Cycle Hydrocarbon Emissions Results from Chassis Dynamometer Vehicle Tests	75
53.	FVI's with Cracked Insulation. Cylinders 5, 6 V8 Engine	76
<u>Tables</u>		
1.	CFR Sensitivity Data for Baseline Configuration (2500 RPM, 50 psi BMEP)	77
2.	CFR Sensivity Data for FVI Configuration (2500 RPM, 50 psi BMEP)	78

3.	Ignition Delay and Flame Speed Data from CFR Tests	79
4.	Engine Data from EC Dynamometer Tests (1500 RPM, 75 psi BMEP)	80
5.	Engine Data from EC Dynamometer Tests (1000 RPM, 25 psi BMEP)	81
6.	Statistical Data for Distribution Tests	82
7.	Urban Driving Cycle Predictions Based on EC Dynamometer Data	83
8.	Urban Driving Cycle Results for Stock Baseline Based on Chassis Dynamometer Tests	84
9.	Urban Driving Cycle Results for Modified Baseline Based on Chassis Dynamometer Tests	85
10.	Urban Driving Cycle Results for FVI Configuration Based on Chassis Dynamometer Tests	86
11.	Measured Versus Predicted Results for Urban Driving Cycle	87

ORIGINAL PAGE IS OF POOR QUALITY

SECTION I

SUMMARY

The Fuel Injection Development Corporation, FIDC, has developed a fuel vapor injector/igniter system for use on existing automobile engines. The FIDC system consists of two subsystems: a fuel vapor injector/igniter (FVI), and a lean limit controller (LLC). The FVI provides both a means for fuel vapor injection into the cylinder and an ignition source for the charge, while the LLC attempts to control the engine equivalence ratio* (ϕ) to the lean limit of driveability.

JPL was requested to evaluate the FIDC system for the Energy Research and Development Administration.** The overall objective was to measure the effectiveness of the FIDC system under controlled laboratory conditions by comparative experimental data. Engine performance, fuel consumption, and exhaust emissions were used as the criteria for comparison. Data were obtained for a Chevrolet vehicle equipped with and without the FIDC system and operating over the 1975 Federal Test Procedure (FTP) urban driving cycle.

Three groups of tests were performed: steady state (engine map) tests with a single-cylinder, Co-operative Fuel Research (CFR) engine; steady-state (engine map) tests with a multicylinder engine; and Federal Test Procedure (FTP) urban driving cycle tests. The driving cycle tests were used to evaluate three engine configurations: the stock engine; the stock engine modified to match the FIDC system equivalence ratio with "optimum" spark advance; and the same engine with the FIDC system and "optimum" spark advance. These were selected so as to allow a comparison of the FIDC system with a stock vehicle, and with a less complicated means of accomplishing the same equivalence ratio reduction as obtained with the FIDC system.

Tests using a CFR engine were conducted in an effort to understand the effect of the FIDC system on the basic combustion processes. Several combinations of RPM and BMEP were chosen for the steady-state tests. These conditions were selected to encompass the ranges frequently encountered by a multicylinder engine while performing the 1975 Federal Test Procedure Urban driving cycle.

^{*}Equivalence ratio, ϕ , is the stoichiometric air-fuel ratio divided by the operating air-fuel ratio.

^{**}Now the New Concepts Evaluation Branch of Non-Highway Transport Systems and Special Projects, Division of Transportation Energy Conservation, Department of Energy.

One steady-state condition was also selected for ignition delay and flame speed tests. These measurements were used to compare the ignition delay and flame speed between the baseline engine and the same engine modified by the installation of the FVI spark plug.

Results of the CFR engine tests show that the FVI portion of the FIDC system does alter the combustion process, and the use of the FVI allowed the CFR engine to run leaner without misfire. The CFR engine showed similar operation both with and without the FVI at equivalence ratios of 0.7 and above. At equivalence ratios from 0.6 to 0.7, the CFR engine with the FVI showed lower fuel consumption, lower HC emissions, lower CO emissions, and higher $\mathrm{NO_{X}}$ emissions. These data support the conclusion that the FVI does improve the combustion process at these leaner operating conditions.

The ignition delay and flame speed data were recorded at an equivalence ratio of about 0.9. No significant differences were observed in these data between the baseline and FVI configurations. Based on the previous paragraph, one might speculate that the ignition delay and flame speed difference, if any, would be observed at equivalence ratios between 0.6 and 0.7. Unfortunately, there was not an opportunity to repeat the ignition delay and flame speed tests.

Multicylinder engine tests were conducted to provide steadystate data for a variety of equivalence ratios (ϕ 's), spark advances,
BMEPs and RPMs. These data were then used as input for a driving
cycle computer simulation program and the computer program in turn was
used to select "best" values of equivalence ratio and spark advance.
The "best" values of equivalence ratio and spark advance are those
which provide least fuel consumption, while maintaining acceptable
emissions over the 1975 urban driving cycle. These values were then
used with the test engine installed in a vehicle, and the vehicle
tested over the 1975 FTP on a chassis dynamometer. Also obtained from
some of the steady-state tests were a comparison of cylinder-tocylinder equivalence ratio distribution, with and without the FIDC
system installed.

The engine was connected directly to an eddy-current (EC) dynamometer for the steady-state tests. To provide a basis of comparison for the FIDC system, tests with the stock configuration were made at three different equivalence ratios. This variation in equivalence ratio was accomplished by changing the carburetor main metering jets. The jet sizes were #45 (0.045 in. ID, stock), #44 (0.044 in. ID), and #42 (0.042 in. ID, leanest). The #42 jets were finally selected to approximate the equivalence ratio at which the FIDC configuration operated. Spark advance was manually selected for each test condition. Vacuum and centrifugal advance mechanisms were disabled and the spark advance was adjusted for all steady-state tests to provide MBT (minimum advance for best torque), and two conditions retarded from MBT. These retarded conditions were selected at 98% and 95% of the thermal efficiency obtained at MBT.

Fourteen combinations of engine speed and load were tested. The performance of the FIDC system relative to the stock engine was mixed. That is to say, under some conditions the FIDC system was

superior while under others it showed a disadvantage. The steady-state engine tests showed neither a systematic advantage nor disadvantage for the FIDC system, but an understanding of how the device worked in practice emerged from these tests.

The control strategy built into the FIDC system is to admit excess air into the intake manifold, and hence lean the air/fuel mixture, until misfire occurs, stop the flow of additional air until smooth engine operation is re-established, and then begin the process again. The degree to which the FIDC system could lean the engine was dependent on the operating condition. In particular at high loads, i.e., manifold pressure close to l atm., the amount of additional air that can be aspirated is very limited. This strategy and hardware implementation lead to three broad kinds of operation. They are:

- (1) Ineffective. At intake manifold pressures near 1 atmosphere the FIDC system has little or no effect, and the equivalence ratio is not much different from that which the carburetor by itself produces. Fuel consumption and emissions are also little different from the unmodified engine.
- (2) Effective. In this case the FIDC system is able to lean the engine, but not to the misfire limit. There were many instances where the effect of the FIDC system was significant, but the misfire limit was not reached. The amount of additional air which could be aspirated was still less than required for misfire and/or the margin between the stock operating condition and misfire was large. This is the condition for which the FIDC system shows a real advantage. The equivalence ratio is reduced, but the combustion process is still regular. Hence, the fuel consumption is reduced and the hydrocarbon and carbon monoxide emissions are improved. Note, however, that unless the equivalence ratio is reduced well below 0.9 the oxides of nitrogen will be increased.
- (3) Detrimental. In this case the FIDC system leans the engine to the misfire limit. This is an unfavorable condition since the misfires (or more accurately, severely degraded combustion) lead directly to increased fuel consumption and hydrocarbon emissions.

Tests were made with the FVI configuration and one stock configuration (#42 carburetor jets) to determine the cylinder-to-cylinder equivalence ratio. For these tests the engine was equipped with exhaust headers which permitted emissions measurements from individual cylinder exhaust streams. An individual cylinder equivalence ratio was calculated from these emissions measurements using the carbon balance technique. With the limited number of test conditions, no systematic differences in the distribution characteristics of the two engine configurations could be identified. In particular, no improvement in distribution could be shown for use of the FIDC.

To help establish the best spark advance strategy for the vehicle tests, the steady-state engine data (see Section V) were used to predict the performance of a vehicle over the urban driving cycle using a computer simulation of the cycle. The computer program divides the driving cycle into 1-second increments and uses the vehicle velocity profile, vehicle inertia, tire rolling resistance, and vehicle drive train losses to determine the required engine brake mean effective pressure (BMEP) and engine RPM. Tables of brake specific fuel consumption and brake specific emissions (BSFC, BSNO_X, BSCO, BSHC) as functions of BMEP and RPM, which are derived from the steady-state engine dynamometer tests, are used to calculate the fuel consumption and emissions for each time increment. The results for each time increment are then summed to obtain the fuel consumption in miles per gallon (MPG) and emission in grams per mile (g/mi) for the cycle.

The following parameters were selected to be used for the vehicle driving cycle tests:

- (1) Number 45 carburetor jets, and a 6 degree initial spark advance were used for the stock vehicle. The 6 degree spark advance is specified for the vehicle, and the number 45 jets provided the average equivalence ratio specified for the stock configuration.
- (2) Number 42 carburetor jets, and a 16 degree initial spark advance were used for the modified vehicle. The number 42 jets provided a close approximation to the equivalence ratio of the FIDC system at steady state conditions, and the 16 degree spark advance provided the "best" fuel economy and emissions for this configuration as predicted by the driving cycle computer program.
- (3) The number 45 carburetor jets, and an 11 degree initial spark advance were used for the vehicle driving cycle tests with the FIDC system. The jets used with the FIDC system should be stock (by design of the system), and the 11 degree spark advance was predicted to provide the "best" fuel economy and emissions as a result of driving cycle computer program.

The test engine used for the steady-state tests was installed in a 1973 Chevrolet Impala chassis equipped with a 350 Turbo-Hydramatic transmission, a 2.73 rear axle ratio, and G 78 x 15 bias ply tires. The inertia weights selected were those for a 4500 pound car. This is the vehicle configuration for which the FIDC system was developed, although the FIDC vehicle was a 1975 Chevrolet Malibu with the equivalent driveline. Gasoline consumption was determined by using a weigh tank and was also calculated using the carbon balance technique. Exhaust emissions were determined using a constant volume sampling (CVS) system as prescribed in the Federal Register.

The FIDC configuration demonstrated slightly (about 5 percent) better fuel economy than the stock configuration, but the modified stock configuration (i.e., #42 carburetor jets and 16 degree initial

advance) produced a fuel economy 12% better than stock. Also, the HC emissions from the FIDC system were about 230 percent higher than those for the modified stock configuration. The FIDC configuration gives significantly poorer HC emissions during the cold start transient portion of the cycle. This indicates that the cold start implementation of the FIDC system is not optimum. Even without this problem, however, the HC emissions for the FICD system would exceed the HC emissions for the modified stock configurations. Both the FIDC system and the modified stock engine adversely affected driveability.

In the final analysis then, the FIDC system is a device which will yield a modest, positive effect on fuel consumption, but at the price of increased emissions, loss of driveability, and the monetary value of the device itself. These disadvantages would seem to outweigh the advantages, particularly in view of the fact that the effects can be achieved by very simple modifications to the basic engine.

ORIGINAL PAGE IS OF POOR QUALITY

SECTION II

INTRODUCTION

Fuel Injection Devlopment Corporation (FIDC), located in Bellmawr, New Jersey, has developed a fuel vapor injection/igniter system for use on existing automobile engines. The FIDC system consists of two subsystems: A fuel vapor injector/igniter (FVI), and a lean limit controller (LLC). The FVI provides both a means for fuel vapor injection into the cylinder and an ignition source for the charge, while the LLC controls the engine equivalence ratio* (\$\phi\$) to the lean limit of driveability.

JPL was requested to evaluate the FIDC system for the Energy Research and Development Administration.** The overall objective was to measure the effectiveness of the FIDC system under controlled laboratory conditions by comparative experimental data. Engine performance, fuel consumption, and exhaust emissions were used as the criteria for comparison. Data were obtained for a Chevrolet vehicle, equipped with and without the FIDC system, and operating over the 1975 Federal Test Procedure (FTP) urban driving cycle. Note that except for altering initial spark timing, no attempt was made to optomize the multicylinder engine for operation with the FIDC system. For example, the exhaust gas recirculation (EGR), and other subsystems of the engine were not altered to maximize the potential benefits from the FIDC system. The FIDC system, being an aftermarket retrofit device, could easily include a change in initial spark timing as part of the installation, but the EGR and similar subsystems would probably not be altered.

This report provides a complete description of the tests performed, and an analysis of the data from those tests. Three groups of tests were performed: steady-state (engine map) test with a single-cylinder, Co-operative Fuel Research (CFR) engine; steady-state (engine map) tests with a multicylinder engine; and Federal Test Procedure (FTP) driving cycle tests. The driving cycle tests were used to evaluate three engine configurations: the stock engine; the stock engine modified to match the FIDC system equivalence ratio with "optimum" spark advance; and the same engine with the FIDC system. These were selected to compare the FIDC system with a stock vehicle, and with a less complicated means of accomplishing the same equivalence ratio reduction obtained with the FIDC system. There is, additionally, a discussion of the predicted FTP driving cycle performance based upon the V-8 steady-state data, a discussion of the operational characteristics of the FIDC system and discussion of the potential application of this FIDC system. The latter considers the system retrofit capability, maintenance, and economics. Finally, there are some driver impressions and concluding remarks.

^{*}Equivalence ratio, ϕ , is the stoichiometric air-fuel ratio divided by the operating air-fuel ratio.

^{**}Now the New Concepts Evaluation Branch of Non-Highway Transport Systems and Special Projects, Division of Transportation Energy Conservation, Department of Energy.

SECTION III

DESCRIPTION OF FIDC SYSTEM

The FIDC system, shown schematically in Figure 1 and pictured in Figure 2, consists of two subsystems. These are the Fuel Vapor Injector/Igniter (FVI) and the Lean Limit Controller (LLC). The FVI subsystem includes a fuel delivery system which routes the major portion of an engine's fuel directly to the stock carburetor. However, a small portion of the fuel is diverted to the FVI's. Each FVI shown in Figure 3 combines the function of the conventional spark plug with a gasoline distribution function. The center electrode of an ordinary spark plug has been replaced with a small piece of tubing. Fuel is fed through the tubing and enters the combustion chamber in the vicinity of spark initiation. Upstream of the center electrode tube are a check valve, capillary tube, pressure regulator, and the normal fuel delivery system. Spark is initiated from the center electrode tube of the spark plug. A ground electrode is provided near the tip of the spark plug shroud.

The fuel which enters the combustion chamber directly through the FVI is in addition to the normal air/fuel mixture from the stock carburetor which enters the combustion chamber via the intake valve. Hence, inclusion of an FVI by itself would cause a "richer" than normal air-fuel mixture in the combustion chamber. A second sybsystem, identified as the Lean Limit Controller (LLC), is used to lean the combustion chamber mixture. The LLC admits "extra" air to the engine's induction system between the carburetor and intake manifold. A solenoid valve controls the amount of "extra" air admitted to the engine. An electronic control module uses an input signal from a magnetic pickup which senses changes in the flywheel rim velocity. The electronic control module output controls the solenoid valve. A sudden decrease in flywheel rim velocity is interpreted as engine misfire. The LLC subsystem is continuously seeking the engine's lean misfire limit. "Extra" air is added until misfire is detected, then a portion of the "extra air" is deleted. The process is continuous while the engine is running.

The FIDC system is designed to operate above 1000 RPM. Below 1000 RPM, the complete FIDC system (FVI and LLC) automatically turns off.

ORIGINAL PAGE IS OF POOR QUALITY

SECTION IV

CFR ENGINE TESTS

Tests using a Co-operative Fuel Research (CFR) engine were conducted in an effort to understand the effect of the FIDC system on the basic combustion processes. Several combinations of RPM & BMEP were chosen for the steady-state tests. These conditions were selected to encompass the ranges frequently encountered by a multicylinder engine while performing the Federal Test Procedure (1975 Urban Federal Test Procedure). The test conditions are shown in Figure 4.

The Co-operative Fuel Research (CFR) engine is a single cylinder engine designed for basic combustion and fuel research. The CFR engine at JPL has a 2.8125 inch bore, and 4.50 inch stroke (51.37 CID). The compression ratio is variable from 6.1 to 22.5:1 and was set at 8.5:1 for these tests. The cylinder head is a Removalbe Dome Type (RDH), with a hemispherical contour above the cylinder. The head has a spark plug hole and a 7/8"-18 transducer hole. The piston is dome-topped, and has 3 rings. The valves are inclined at an angle of 30 degrees from vertical (the cylinder center line is vertical). The breaker-points and coil ignition system is used on the CFR engine. The non-standard induction system used at JPL consists of a 2-feet long, 1-3/8 inch I.D. tube through which the engine air is inducted. Gasoline is injected through a pneumatic atomizer into the incoming air stream.

The CFR engine is connected to an appropriately sized eddy-current (EC) dynamometer. The CFR engine and dynamometer are supplied as an assembly by Waukesha Motor Company (the dynamometer is manufactured by Eaton Power Transmission Systems).

The CFR engine induction system was modified as required to accept the installation of the FVI System (note that the LLC was not used for the single cylinder engine tests). The standard spark plug was replaced and the fuel delivery plumbing was split; part of the fuel passes through the FVI, and the remainder through the baseline atomizer. Direct fuel flow measurements were made only of the total fuel being used by the engine. The air and fuel plumbing for the CFR engine, as well as measurement locations, are shown in Figure 5.

Acceptable data for three of the test conditions could not be obtained. Consistent, repeatable ignition could not be obtained at lower loads and/or RPMs. The unobtainable test conditions were: 500 RPM, 50 psi BMEP; 1000 RPM, 50 psi BMEP; 1500 RPM, 25 psi BMEP. Data for four to nine values of equivalence ratio were obtained at each of the remaining test conditions.

One steady-state condition (1500 RPM, 50 psi BMEP) was also selected for ignition delay and flame speed tests. These measurements are used to compare the ignition delay and flame speed between the baseline engine and the same engine modified by the installation of the FVI spark plug. The cylinder pressure as a function of time was recorded

on an oscillograph with the engine under load, and also with the engine being motored. A comparison of these data for the two engine configurations can provide insight into any combustion process changes due to the installation of the FYI System.

A. DISCUSSION OF TEST RESULTS

At each operating condition, several equivalence ratios and spark advances were tested. Data were obtained for both the baseline CFR system and the FVI system. The results for one operating condition (2500 RMPM, 50 psi BMEP) are discussed in the main body of this report. The results from this particular operating condition are typical of all the CFR results. A summary of all CFR data is included in Appendix A.

Results for the baseline CFR configuration are given in Table 1. The corresponding data for the FVI system are given in Table 2. In these tables, fuel consumption is expressed in (lbm/Bhp-hr) while emissions are given in (g/min). The air fuel ratio of the engine is expressed in terms of the system equivalence ratio which is defined as follows:

the system equivalence ratio which is defined as
$$\frac{\frac{\dot{M}_{A}}{\dot{M}_{G}}}{\dot{M}_{G}} = \frac{\frac{\dot{\dot{M}}_{A}}{\dot{\dot{M}}_{G}}}{\frac{\dot{\dot{M}}_{A}}{\dot{\dot{M}}_{G}}} = \frac{\frac{\dot{\dot{M}}_{A}}{\dot{\dot{M}}_{G}}}{\frac{\dot{\dot{M}}_{A}}{\dot{\dot{M}}_{G}}} = \frac{ORIGINAL\ PAGE\ IS}{OF\ POOR\ QUALITY}$$

where M_A = Total air flow to the engine

 M_G = Total gasoline flow to the engine

ζ = Stoichiometric air fuel ratio (A/F) for test fuel

The total gasoline flow used in this calculation includes both the gasoline to the injector/igniter plug and the gasoline to the atomizer. At each equivalence ratio, three spark advances were tested. A real-time plot was made of torque versus spark advance while holding engine RPM and equivalence ratio constant. The minimum spark advance for best torque (MBT) timing was determined from this plot and was the largest advance tested. The torque values corresponding to 0.98 and 0.95 times the MBT value were calculated, and the corresponding spark timings were read from the plot. Data was recorded at the MBT condition, and the 0.98 and 0.95 MBT conditions. This technique for selecting spark timing resulted in a varying amount of spark retard relative to MBT timing.

Fuel consumption as a function of equivalence ratio is given in Figure 6 for the baseline and FVI configurations. The data shown are for MBT spark timing. The fuel consumption of the engine decreases as the equivalence ratio decreases until the combustion interval become too long for efficient engine operation. In the limit, engine

operation ceases completely because of misfires. The baseline CFR configuration reaches its minimum fuel consumption at an equivalence ratio of about 0.7. There is a significant increase in fuel consumption for equivalence ratios less than 0.7. The fuel consumption for the FVI configuration is about the same as that for the baseline configuration for equivalence ratios greater than 0.7. However, the fuel consumption of the FVI configuration continued to decrease for leaner operation, and apparently had not reached its minimum value for an equivalence ratio of about 0.61 (the minimum value tested). Note that the lean limit for the test fuel used is 0.59. Unlike the baseline configuration, there was little or no region of degraded combustion for the FVI. The dividing line between "good" combustion and no combustion was very sharp. Hence the FVI curve of Figure 6 shows no characteristic up-turn of the BSFC curve at lean conditions.

The effect of spark retard on fuel consumption is illustrated in Figure 7 for the baseline and FVI configuration. Data for spark advances which are retarded 7-10° (depending on the S. A. required to give 98% of MBT) from MBT timing are compared with data for MBT spark timing. Except for the lowest equivalence ratio, the retarded spark results in about a 5 percent increase in fuel consumption. For the retarded spark condition, the fuel consumption reaches a minimum for an equivalence ratio of about 0.65 and then increases significantly for leaner operation.

Hydrocarbon (HC) emissions are shown plotted versus equivalence ratio in Figure 8 for the baseline and FVI configurations. The data are for MBT spark timing. As the equivalence ratio is reduced, the HC emissions decrease slightly, reaching a minimum value for an equivalence ratio of about 0.75, and then increase again for leaner equivalence ratios. For the baseline CFR configuration, the HC emissions increase sharply for equivalence ratio less than 0.7 indicating the onset of misfire. This coincides with the sharp increase in fuel consumption shown in Figure 6. Note that this apparent advantage in HC emissions for the FVI system was not realized in the multicylinder tests (see Page 22).

The effect of spark retard on HC emissions is illustrated in Figures 9 and 10 for the baseline and FVI configurations respectively. Again, data for spark advances which are retarded 7-10° from MBT timing are compared with data from MBT spark timing. Hydrocarbon emissions decrease slightly by retarding spark timing, although the amount of spark retard tested is too small to show a significant affect. At equivalence ratios less than 0.7, the FVI configuration produces lower HC emissions than the baseline configuration. At equivalence ratios greater than 0.7, the effect of the hardware configuration on HC emissions was insignificant. Once combustion becomes degraded through reduction of equivalence ratio, spark retard has little or no effect on HC emissions as seen in the Figure 9 data for the baseline engine.

Carbon monoxide (CO) emissions are shown plotted versus equivalence ratio in Figure 11 for the baseline and the FVI configurations. The data are for MBT spark timing. In the baseline CFR configuration, the CO emissions start increasing for equivalence

ratios less than approximately 0.75. The CO emissions for the FVI configuration remain constant over the range of equivalence ratios tested. This is, again, an indication that combustion remains stable with the FVI configuration as the equivalence ratio is decreased to near the flammability limit. This is possibly due to the stratified charge provided by the FVI. The baseline configuration combustion becomes erratic at equivalence ratios below approximately 0.75.

Nitrogen oxide (NO $_{\rm X}$) emissions are shown plotted versus equivalence ratios in Figure 12 for the baseline and FVI configurations. The data are for MBT spark timing. Decreasing the equivalence ratio below 0.9 is an effective means of reducing NO $_{\rm X}$ emissions in both configurations. This is probably the result of decreasing peak temperature and decreasing the time at peak temperature for lean combustion conditions. The NO $_{\rm X}$ emissions for the baseline configuration drop below those for the FVI configuration for equivalence ratios below approximately 0.75 because of the degraded combustion under these lean conditions.

The tradeoff between fuel consumption and NO_X emissions is illustrated in Figure 13. For MBT spark timing, the data for the baseline and FVI configurations can be represented by a single curve for NO_X emissions levels greater than 1.0 g/min. The FVI configuration produced a NO_X level of 0.5 g/min with no fuel consumption penalty; however, the baseline configuration suffers approximately a 10 percent penalty in fuel consumption at the lower NO_X level.

The relationship between the HC and NO_{X} emissions is shown in Figure 14 for the baseline and FVI configurations. At any given NO_{X} level, the FVI configuration produced slightly more HC emissions than the baseline configuration. For NO_{X} emissions levels less than 1.0 g/min, both configurations show significant increases in HC emissions.

These sensitivity test results indicate that at least for some operating conditions, the FVI system shows better lean operating characteristics than the baseline CFR system. However, even with the apparent superior lean operating characteristics of the FVI system, the HC emissions increase at equivalence ratios less than 0.70. These improved lean operating characteristics are consistent with the claims that the FIDC system converts a conventional engine to a stratified charge engine.

B. IGNITION DELAY AND FLAME SPEED DATA

Cylinder pressure-time traces can be used to derive information about ignition delay and combustion duration. This information is useful in evaluating systems which alter the combustion process. Cylinder pressure measurements were made on the CFR engine using both the baseline and FVI configurations. Ignition delay and combustion duration information were obtained from both motoring and firing pressure-time traces. These data were recorded on an oscillograph and successive firing cycles were averaged to arrive at the firing data discussed here.

To help in analyzing pressure-time data, several parameters are defined in Figure 15. An overlay of a firing and a motoring pressure-time trace are shown there. The combustion interval is defined as the period from the initiation of the spark to the peak cylinder pressure. Ignition delay is defined as the period from spark initiation to the first measurable rise in cylinder pressure above the motoring pressure trace. The ignition delay period corresponds to the time required for transition from the spark kernel to a developed flame front.

Significant errors in determining ignition delay and effective combustion duration can arise because of the difficulty in accurately determining the crank angle at which cylinder pressure first rises above the motoring pressure. Two additional parameters are defined to avoid this difficulty. These parameters are given in Figure 16, which shows the normalized pressure difference between the firing and motoring pressure traces as a function of crank angle. An ignition delay parameter α , is defined as the period from spark initiation until cylinder pressure reaches 10 percent of the peak pressure difference between firing and motoring traces. A flame speed parameter β , is defined as the time required for the cylinder pressure to change from 10 percent to 95 percent of the peak pressure difference between firing and motoring traces.

The average firing and motoring pressure-time traces for one of the CFR tests of the FVI configuration are shown in Figure 17. The corresponding normalized pressure difference plot is given in Figure 18. The ignition delay and flame speed data from the six CFR test conditions are shown in Table 3. The tests were run at an equivalence ratio of 0.87 for both the baseline and FVI configurations. Plots of the ignition delay parameters in Figure 19 and the flame speed parameters in Figure 20 reveal no significant difference in the results for the baseline and FVI configurations at equivalence ratios around 0.9. One would expect some differences in ignition delay and flame speed at $\phi = 0.7$. Since the FVI showed improved lean combustion characteristics in terms of fuel consumption and emissions it seems reasonable to expect these are the result of some change in the combustion processes under the lean condition. The planned objective was to compare the combustion characteristics between the baseline and FVI configurations at the same (predetermined) equivalence ratio. This objective was completed, and no difference in the combustion characteristics were observed. Unfortunately, there was not an opportunity to repeat these tests at a lower equivalence ratio. Having the results for $\phi = 0.7$ would not change the conclusions derived from the multicylinder and driving cycle tests.

SECTION V

MULTICYLINDER ENGINE DYNAMOMETER TESTS

Multicylinder engine tests were conducted to provide steadystate data for a variety of equivalence ratios (ϕ 's), spark advances, BMEP's and RPMs. These data were then used as input for a driving cycle computer simulation program and the computer program was used to select the best values of spark advance. These best values were then used with the test engine installed in a vehicle, and tested over the 1975 FTP on the chassis dynamometer. Also obtained from some of the steady-state tests, was a comparison of cylinder-to-cylinder equivalence ratio distribution, with and without the FIDC System installed.

The multicylinder engine used for these tests was a 1975 Chevrolet 350-2V engine in the 49 state emissions control configuration. FIDC's development engine and vehicle were duplicated as closely as possible. The engine was assembled using a 1975 engine originally obtained through the Chevrolet dealer parts system. Originally the engine came with a 4-barrel carburetor. The 2-barrel carburetor, manifold, and all emissions equipment required to make the engine into the desired configuration were obtained through the Chevrolet dealer parts system, with the exception of some portions of the carburetor. Replacement parts for the desired engine configuration were strictly adhered to with the exception of the 2-barrel carburetor. In order to simulate the desired test engine configuration, a carburetor was assembled using the main body and other critical parts from a production carburetor. The carburetor assembly is discussed in Section VIII.

The cylinder heads, pistons, and camshaft were verified, through use of the Chevrolet parts book, to be the same as a 1975 49-state vehicle. The exhaust system, including the manifolds, exhaust catalyst, muffler and pipes were purchased for the 1975 49-state vehice, and used for both the engine dynamometer tests and driving cycle tests. Vehicle components which could affect the driving cycle tests were verified with a representative of the FIDC to be the same as those used by FIDC. These items included the Turbo-Hydromatic 350 transmission, 2.73 rear axle ratio, and G78 x 15 tires. All of the engine emissions control hardware were verified with the FIDC representative to be the same as that used on the FIDC development vehicle.

The emissions equipment included a positive crankcase ventilation (PCV) system, exhaust gas recirculation (EGR), early fuel evaporation (EFE) (vacuum operated heat-riser value), and an exhaust catalyst. This engine is not equipped with an air injection reactor (AIR) system. A fuel vapor recovery system, although used on the car being simulated, was not used with the test engine. Fuel was supplied to the carburetor from a pressurized facility fuel delivery and measuring system as shown in Figure 21. The exhaust system configuration is shown in Figure 22.

The engine was connected directly to an eddy-current (EC) dynamometer for the steady-state tests. To provide a basis of comparison to the FIDC system, tests with the stock configuration were made at three different equivalence ratios. This variation in equivalence ratio was accomplished by changing carburetor main metering jets. The jet sizes were #45 (0.045", stock), #44 (0.044"), and #42 (0.042" leanest). The #42 jets were finally selected to approximate the equivalence ratio at which the FIDC configuration operated.

Spark advance was manually selected for each test condition. That is to say, the vacuum and centrifugal advance mechanisms were disabled for the purposes of the steady-state tests. The spark advance was adjusted for all steady-state tests to provide MBT (minimum advance for best torque), and two conditions retarded from MBT. These retarded conditions were selected at 98% and 95% of the torque obtained at MBT. A description of the technique used appears previously in the CFR section of this report. The only difference was that equivalence ratio was not a variable for the multicylinder engine since a carburetor was being tested.

For equivalence ratio distribution tests, the stock exhaust manifolds were replaced with exhaust headers. The exhaust headers were modified to permit sampling the exhaust from each cylinder. From the exhaust gas composition, an equivalence ratio was calculated for each cylinder.

The engine, with the FIDC system and headers for the equivalence ratio distribution test, is shown in Figure 23 connected to the EC dynamometer.

A. SENSITIVITY DATA

Tests were conducted on both the stock and FIDC configurations to determine the sensitivity of fuel consumption and emissions to changes in spark advance. In addition, the equivalence ratio for the stock configuration was varied in order to match the equivalence ratios produced by the FIDC system.

The stock configuration was tested at three equivalence ratios corresponding to three carburetor settings (#45 main metering jets, #44 main metering jets, and #42 main metering jets). Engine operating conditions, shown in Figure 24 were selected to be representative of those encountered in the urban driving cycle. For each run condition, all four engine configurations (i.e., the FVI and three stock systems) were tested at three spark advance settings (MBT timing and two retarded settings). Only data from two engine operating conditions will be discussed here; however, all engine data are included in Appendix B. Also identified on Figure 24 are the four run conditions for which cylinder-to-cylinder distribution data were taken.

The two operating conditions selected for discussion are chosen to represent the relative data extremes. They show the FIDC system at one condition to its best advantage, and at one condition with its

least advantage. In general, the data from the other engine conditions lies between these extremes.

Sensitivity data with the engine operating at 1500 RPM and 75 psi BMEP are given in Table 4. The system equivalence ratio is defined in the same way it was defined for the CFR tests (see Section III). For the FIDC configuration, the total gasoline flow includes both the gasoline flow through the carburetor and the gasoline supplied to the injector/igniter plugs. Fuel consumption is expressed in $(1b_m/hp-hr)$, and exhaust emissions are given in (g/min).

Fuel consumption is shown plotted versus equivalence ratio in Figure 25. The data are all for MBT spark timing. All three stock engine configurations are rich $(\varphi_{sys}>1.0)$ at this operating condition. Fuel consumption decreases as the stock engine is made to operate at leaner equivalence ratios. The FIDC configuration runs much leaner $(\varphi_{sys}=0.83)$ than the stock configurations at this operating condition and likewise shows lower fuel consumption.

In viewing the fuel consumption data shown in Figure 25, one should note that the #42 carburetor jets do a poor job of approximating the equivalence ratio of the FIDC system at 1500 RPM and 75 psi BMEP. The #42 jets were selected to approximate the FIDC system equivalence ratio over the wide RMP/BMEP range experienced for the urban driving cycle. The #42 jets approximate the FIDC system equivalent ratio best when the carburetor is out of the power enrichment regime. At 1500 RPM and 75 psi BMEP, the carburetor power enrichment masks the operation of the main metering circuit.

A comparison of the HC emissions for the four engine configurations is given in Figure 26 for MBT spark timing and for spark retarded from MBT spark timing. For MBT spark timing, the HC emissions for the FVI system are higher than those for the two leaner stock configurations. In all cases, spark retard leads to a reduction in HC emissions; however, the reduction is much larger for the FVI system for this run condition. For the stock configurations, which are all running rich, a reduction in equivalence ratio leads to a reduction in HC emissions.

Oxides of nitrogen (NO $_{\rm X}$) emissions are shown plotted versus equivalence ratio in Figure 27 with all engine configurations set at MBT spark timing. For the stock configurations, which are running rich, an increase in equivalence ratio leads to a decrease in NO $_{\rm X}$ emissions. This results partially from the fact that under rich conditions less oxygen is available for the production of NO $_{\rm X}$ emissions and partly from the reduced combustion temperature. The NO $_{\rm X}$ emissions for the FVI system are much higher than those for the stock configurations because the FVI system operates at (for 1500 rpm, 75 psi BMEP) ϕ = 0.83, which corresponds very nearly to peak NO $_{\rm X}$ production. Peak NO $_{\rm X}$ production generally occurs in the equivalence ratio range between 0.85 and 0.95.

The effects of spark advance on fuel consumption and NO_X emissions are given in Figures 28 and 29. As spark timing is retarded from MBT spark advance, fuel consumption increases for all

configurations. The NO $_{\rm X}$ emissions are reduced when the timing is retarded from its MBT value. This reduction in NO $_{\rm X}$ emissions is a result of both the decrease in peak combustion temperature and the decrease in residence time above the threshold temperatures for NO $_{\rm X}$ formation.

The tradeoff between fuel consumption and NO_{X} emissions is illustrated in Figure 30. For the stock configurations, the data for all equivalence ratios and spark advances can be adequately represented by a single curve for this run condition. Reduction of the level of NO_{X} emissions from 10 g/min to 5 g/min results in a 10 percent increase in fuel consumption. At the same NO_{X} emissions level, the fuel consumption of the FIDC system is about 7 percent less than those of the stock configurations for this engine operating condition.

The relationship between HC emissions and NO $_{\rm X}$ emissions is shown in Figure 31. For all engine configurations, retarding the spark from MBT timing reduces both HC and NO $_{\rm X}$ emissions for this run condition. At the same level of NO $_{\rm X}$ emissions, the HC emissions of the FIDC configuration are less than those from any of the three stock configurations. (Note that the trends shown in Figure 31 for the multicylinder engine and Figure 14 for the CFR engine cannot be directly compared from the two figures. The multicylinder data shown in Figure 31 indicates the trend while varying spark advance, and maintaining a relatively constant equivalence ratio. Figure 14 shows CFR data which maintains MBT spark advance, and allows equivalence ratio to vary.)

The results for a second run condition will be discussed next. Sensitivity data with the engine operating at 1000 RPM and 25 psi BMEP is given in Table 5. The parameters and the units used are the same as those for the previous set of data.

A plot of fuel consumption versus equivalence ratio is given in Figure 32. As the stock engine is made to operate at leaner equivalence ratios, the fuel consumption decreases as would be expected*. In this case, the fuel consumption of the FIDC system is about 15 percent higher than the fuel consumption of the stock configuration for the same equivalence ratio. The reason for this

^{*}It is recognized that in Figure 32 the carburetor main jet sizes do not follow the expected progression; i.e. the smallest jet size does not produce the leanest operation. Similar effects can be seen in the tabulated data of Appendix B. No investigation of this apparent anomaly was made, but the most likely explanation is that several carburetor circuits are functioning in parallel. For the purposes of the tests reported here, these effects are not important. The #42 jets were selected so as to produce the same equivalence ratio as the FIDC system over a broad range of operating conditions, and they do that as evidenced by the vehicle test results. However for any particular engine operating condition the #42 jets may not provide the best match or even the leanest operation.

difference is not readily apparent, however the hydrocarbon data described in the next paragraph indicates that the combustion process is degraded.

A comparison of the HC emissions for the four engine configurations is given in Figure 33 for MBT spark timing. For the stock configuration, HC emissions decrease with a decrease in equivalence ratio. The HC emissions of the FIDC system are 165 percent higher than the HC emissions of the stock configuration at the same equivalence ratio. This result, coupled with the previous fuel consumption results, indicates poorer combustion with the FIDC system than with the stock configurations at the operating condition. The excessive hydrocarbons from the FIDC system appear to result primarily from the control strategy. Leaning an engine to the point of misfire must inevitably increase the hydrocarbons. Examination of the data in Table 5 indicates that spark retard is not an effective means of reducing the HC emissions from any of the four engine configurations at this run condition.

Oxides of nitrogen emissions are shown plotted versus equivalence ratio in Figure 34. All data are for MBT spark timing. The stock results show NO_{x} emissions to be highest for an equivalence ratio of 0.9 as expected, and to decrease as the equivalence ratio is increased. At the same equivalence ratio the NO_{x} emissions of the FIDC system are 20 percent higher than the NO_{x} emissions of the stock configuration. The NO_{x} results are not consistent with the speculated degraded combustion, but the 20 percent difference between the data from the FIDC system and the stock configuration is within the estimated data precision.

The effects of spark advance on fuel consumption and $\rm NO_x$ emissions are given in Figures 35 and 36. Although there is some unexplained scatter in the data, fuel consumption generally increases for the stock configurations as spark timing is retarded from MBT spark advance. The fuel consumption results for the FIDC configuration are insensitive to changes in spark timing over the range of spark advance tested. The $\rm NO_x$ emissions are reduced for all engine configurations when the timing is retarded from its MBT value.

The tradeoff between fuel consumption and NO_X emissions is illustrated in Figure 37. For all four engine configurations, a reduction in the level of NO_X emissions results in an increase in fuel consumption. At the same NO_X level (1.0 g/min), the fuel consumption of the FIDC system is about 15 percent greater than that of the stock configurations for this particular operating condition.

The relationship between HC and NO_{X} emissions is shown in Figure 38. For all engine configurations, retarding the spark from MBT timing reduces NO_{X} emissions (see Fig. 29), but has little effect on HC emissions. At the same level of NO_{X} emissions (1.0 g/min), the HC emissions of the FIDC configuration are about 140 percent higher than those from the stock configurations.

The steady-state engine sensitivity tests were successful from two standpoints. First, the stated objectives, spark advance

sensitivity and a match of stock to FIDC equivalence ratio, were met. Second, an understanding of how the FIDC system works in practice began to emerge. As was demonstrated by the two test conditions just discussed, the performance of the FIDC system relative to the stock was mixed. Under some conditions, the FIDC system was superior and under others it showed to a disadvantage.

The control strategy built into the FIDC system is to admit air to the intake manifold, and hence lean the air/fuel mixture, until misfire occurs, stop the flow of additional air until smooth engine operation is re-established, and then begin the process again. The degree to which the FIDC system could lean the engine was dependent on the operating condition. In particular at high loads, i.e. manifold pressure close to l atm, the amount of additional air that can be aspirated is very limited. This strategy and hardware implementation lead to three broad kinds of operation. They are:

- (1) Ineffective. At intake manifold pressures near l atmosphere the FIDC system has little or no effect and the equivalence ratio is not much different from that which the carburetor by itself produces. Fuel consumption and emissions are also little different from the unmodified engine.
- (2) Effective. In this case the FIDC system is able to lean the engine, but not to the misfire limit. There were many instances where the effect of the FIDC system was significant but the misfire limit was not reached. The amount of additional air which could be aspirated was still less than required for misfire and/or the margin between the stock operating condition and misfire was large. This is the condition for which the FIDC system shows a real advantage. The equivalence ratio is reduced, but the combustion process is still regular. Hence the fuel consumption is reduced and the hydrocarbon and carbon monoxide emissions are improved. However, it should be noted that unless the equivalence ratio is reduced well below 0.9, the oxides of nitrogen will be higher.
- (3) Detrimental. In this case the FIDC system leans the engine to the misfire limit. This is an unfavorable condition since the misfires (or, more accurately, severely degraded combustion) lead directly to both increased fuel consumption and hydrocarbon emissions.

From the steady-state tests no clearly defined advantage for the FIDC system can be identified.

B. CYLINDER-TO-CYLINDER DISTRIBUTION DATA

Tests were made with the FVI configuration and one stock configuration (#42 jet) to determine the cylinder-to-cylinder equivalence ratio distribution. For these tests the engine was equipped with exhaust headers which permitted emissions measurements from individual cylinder exhaust streams. An individual cylinder

equivalence ratio was calculated from these emissions measurements using the carbon balance technique. Although the carbon balance technique is not as accurate as the direct mass measurement approach, it is the best available method for calculating individual cylinder equivalence ratios.

Figure 39 is included here to illustrate the magnitude of the difference between the two methods for determining equivalence ratio. The overall system equivalence ration (ϕ_{CB}), calculated by the carbon balance technique, is compared with the overall system equivalence ratio (ϕ_{Sys}) based on total gasoline and air supplied to the engine. The better the agreement the closer the data would fall to the 45° line of Figure 39. Under lean conditions (ϕ_{Sys} >1), ϕ_{CB} is about 5 percent less than ϕ_{Sys} . Thus the absolute values for the individual cylinder equivalence ratios (see Figures 40-43) may be in error, but it is nevertheless, believed that the relative comparisons between cylinders and between engine configurations are valid.

Cylinder-to-cyliner distribution data were obtained at four engine operating conditions. Comparisons of the equivalence ratio distribution for the FVI and stock configurations are given in Figures 40-43. The individual cylinder equivalence ratios have been normalized with respect to the average equivalence ratio for the eight cylinders. The average equivalence ratios and the standard deviations for each data set are given in Table 6. These parameters are shown plotted versus RPM in Figures 44 and 45. For some of the engine conditions the distributions are very similar, while for others the distributions are quite different. Notice that the system equivalence ratios are different for the FVI and stock configurations. This makes the interpretation of the distribution data more difficult since the leaner equivalence ratio operation would normally have more scatter (i.e. larger standard deviation). With the limited number of test conditions, no systematic differences in the distribution characteristics of the two engine configurations can be identified. In particular, no improvement in distribution could be shown for use of the FIDC system.

C. URBAN DRIVING CYCLE PREDICTIONS

To help establish the best/spark advance strategy for the vehicle tests, the steady-state engine data (see Section V) were used to predict the performance of a vehicle over the urban driving cycle using a computer simulation of the cycle. The computer program divides the driving cycle into 1-second increments and uses the vehicle velocity profile, vehicle inertia, tire rolling resistance, and vehicle drivetrain losses to determine the required engine brake mean effective pressure (BMEP) and engine RPM. Tables of brake specific fuel consumption and brake specific emissions (BSFC, BSNO_X, BSCO, BSHC) as functions of BMEP and RPM, which are derived from the steady-state engine dynamometer tests, are used to calculate the fuel consumption and emissions for each time increment. The results for each time increment are then summed to obtain the miles per gallon (MPG) and emissions in g/mi for the cycle.

One of the criteria for performing vehicle tests was that only changes to the engine's initial spark advance would be considered. This criterion was adopted because the FIDC system is intended to be a retrofit device, and a recalibration of the distributor advance characteristics would most likely not be a part of a retrofit. However, a resetting of the initial spark advance could easily be a part of installing the system. For the convenience of the reader, the vacuum and centrifugal characteristics used for these tests are shown in Figure 46.

The multicylinder engine dynamometer tests, which have already been described, were performed without using the vacuum and centrifugal advance, but rather the hand-selected spark advance previously described. The data from these tests were assembled into tables of fuel consumption and emissions as a function of BMEP, RPM, and spark advance. Using the recorded data and the computer simulation program, fuel consumption and emissions were computed as a function of five initial spark advances. These were the stock (six degrees BTDC), stock plus five degrees, stock plus 10 degrees, stock plus 15 degrees and stock plus 20 degrees.

Fuel consumption and emissions were computed, using the above parameters, for 4500 and 3500 pound vehicles. The 4500 pound vehicle is the one being tested. The 3500 pound computations were included to observe the effects of the FIDC system on a lighter vehicle, since the industry trend is towards lighter vehicles. These computed results are given in Table 7.

The predicted fuel economy in MPG is shown in Figure 47 plotted versus NO_x emissions in g/mi for a 4500 lb inertia weight vehicle. From the computer simulation a spark advance was selected for the FIDC system that would give its best fuel economy and yet maintain $NO_{\mathbf{x}}$ emissions equivalent to the stock configuration. A spark advance for the modified stock configuration which gave best fuel economy was also selected for the vehicle tests. Note that the spark advance selected gives a slight predicted advantage to the modified stock configuration. Selecting a spark advance to provide the same NOx values for all configurations would not affect the final conclusions. The spark advances selected for vehicle tests are identified on Figure 47 by the solid symbols. The corresponding HC emissions predictions are shown in Figure 48 plotted versus $NO_{\mathbf{x}}$ emissions. These results indicate that HC emissions for the FIDC configuration should be much higher than the two stock configurations. Similar predictions for a 3500 lb inertia weight vehicle are given in Figures 49 and 50.

Although the absolute magnitudes of the fuel economy and emission predictions from a simulation program are always subject to question, the relative magnitudes are believed to give an adequate indication of how two configurations compare. The predicted results should be used in this relative sense.

The following parameters were selected to be used for the vehicle driving cycle tests: (1) the number 45 jets, and 6 degrees initial spark advance were used for the stock vehicle. The 6 degrees spark advance is specified for the vehicle, and the number 45 jets

provided the average equivalence ratio required for the stock configuration. (2) The number 42 jets, and 16 degrees initial sparkadvance were used for the modified vehicle. The number 42 jets provided a close approximation to the equivalence ratio of the FIDC system at steady state conditions, and the 16 degrees spark advance provided the "best" fuel economy and emissions for this configuration as predicted by the driving cycle computer program. (3) The number 45 jets, and 11 degrees initial spark advance were used for vehicle driving cycle tests with the FIDC system. The jets used with a FIDC system should be stock (by design of the system), and the 11 degrees spark advance was predicted to provide the "best" fuel economy and emissions as a result of the driving cycle computer program.

ORIGINAL PAGE IS OF POOR QUALITY

SECTION VI

DRIVING CYCLE TESTS

Vehicle tests with and without the FIDC system installed were conducted using the 1975 Federal Test Procedures (FTP) as ā basis for comparison. Use of the FTP is mandated by the EPA for measuring fuel economy and exhaust emissions. The tests described here were conducted on a CLayton, twin-roll (with 17" roller separation), direct-drive, 125 lb. increment-inertia-weight, chassis dynamometer.

The test engine used for the steady-state tests was installed in a 1973 Chevrolet Impala chassis equipped with a Turbo Hydra-Matic 350 transmission, a 2.73 rear axle ratio, and G 78 x 15 bias ply tires. The inertia weights selected were those for a 4500 pound car. This is the vehicle configuration for which the FIDC system was developed, although the FIDC vehicle was a 1975 Chevrolet Malibu with the equivalent driveline.

Gasoline consumption was determined by using a weigh tank and also calculated using the carbon balance technique. Exhaust emissions were determined as prescribed in the Federal Register using a constant volume sample (CVS) system.

The results of four tests of the stock (baseline) configuration are given in Table 8. Results for the modified stock configuration (#42 carburetor jets) are shown in Table 9. The FIDC configuration results are given in Table 10. Comparisons of the measured results from chassis dynamometer vehicle tests versus the predicted values based on EC dynamometer engine data are shown in Table II. Although the FIDC configuration demonstrated slightly (about 5 percent) better fuel economy than the stock configuration, the FIDC configuration gave less (about 7 percent) fuel economy than the modified stock configuration. Also, the HC emissions from the FIDC system were about 230 percent higher than those for the modified stock configuration. These results are illustrated in the form of bar graphs in Figure 51. Additional insight into the source of the HC emissions is provided in Figure 52 which shows the emissions for the three parts of the urban driving cycle. The FIDC configuration gives signficantly worse HC emissions during the cold start transient portion of the cycle. This indicates that the cold start implementation of the FIDC system is poorly done. Even without this problem, however, the HC emissions for the FIDC system would exceed the HC emissions for the modified stock configurations.

The chassis dynamometer data appears in Appendix C.

SECTION VII

APPLICATION OF THE FIDC SYSTEM

The retrofit capability of the system provided for testing was straight-forward, and within the capability of a garage or home mechanic. Installation time would probably run up to four or five hours for an inexperienced home mechanic, and might be as short as one and one-half to two hours for an experienced mechanic who has previously installed a system. In all, the installation involved replacing the spark plugs, spark plug wires, installation of some new plumbing to provide fuel to the FVI's, installation and plumbing of a solenoid operated air valve to control air into the air injection manifold, emplacement of an electronic box, and installation of a magnetic sensor in the bell housing close to the flywheel ring gear teeth.

A problem was encountered in installing the magnetic sensor in the bell housing. The difficulty was in finding a location in the bellhousing with enough thickness to tap a hole for the magnetic sensor. The location was constrained by the need to use a drill and tap but also so that the magnetic sensor would not protrude below the bottom of the vehicle.

Special tools were provided by the FIDC to install the spark plugs, and the small tubes which feed fuel to the plugs. Either of these tools could be improvised if it were not readily available. The special spark plug socket is based on a standard socket with slight modification, and the fuel tube insertion tool consists of a small rod, the same diameter as the fuel tubing (one-eighth inch), with the end of the rod stepped down to fit inside the fuel tubing. It serves as an aid to guiding the fuel tubing through the hole in the spark plug wire end boot. Either of these tools (shown in Figure 2) would be inexpensive to purchase.

The relatively small amount of testing reported here provided only limited insight into maintenance problems which may occur. The FVI's would probably have to be occasionally changed, as spark plugs are changed. A frequent reason for changing spark plugs is that the electrodes erode. The FVI's should experience the same erosion. There is also more potential for failure of the FVI's since they contain more components than an ordinary spark plug. They could fail if a contaminant gets lodged in the check valve. The FVI's provided for test in the V8 engine did not require or provide for any gap adjustment. In production, the FVI's will probably cost on the order of a factor of 1.5 to 2 more than ordinary spark plugs, due to their increased number of components.

SECTION VIII

GENERAL DISCUSSION

During the course of the evaluation, several observations were made which bear on the evaluation of the FIDC system, but which cannot be quantified. These observations are reported here.

Each time the FVI's were removed from the engine and reinstalled, it was found that a small portion (about 3/16 inch) of the fuel delivery tubing was lost where it attaches to the FVI spark plug. Attempts to remove and replace the fuel tubing on the FVI were unsuccessful because the FIDC-supplied fuel tubing became brittle where it slipped over the FVI. It was found that cutting off a small portion of the tube at the FVI was much easier. From a maintenance standpoint, installing new fuel delivery tubing each time the FVI's were replaced would eliminate this as a problem.

During the course of testing, some apparent failures of the check valve inside the FVI's were observed. A sharp rise in pressure in the regulated low pressure delivery line to the FVI's was attributed to a check valve failure, although no attempt was made to perform any failure analysis of the FVI's. This problem occurred approximately four times early in the test program, and on both the CFR and V-8 engines. Replacement FVI's were installed to correct each failure.

The insulation on some FVI's exhibited external cracking. This occurred only on FVI's installed on the V-8 engine and in the hottest locations, i.e., cylinders 5 and 6. These locations do not benefit from a good flow of cooling air because of their proximity with the exhaust manifold. The cracked insulation did not pose any apparent functional problems with the FVI's, and no FVI's were replaced solely for cracked insulation. Figure 53 shows a photograph of two FVI's with cracked insulation.

On several occasions, the V-8 engine was run with no fuel flow to the FVI's. It seemed that there was a greater tendency for the engine to misfire under these conditions. This is not too surprising since the spark is well shrouded, and without fuel being fed through the FVI there is less chance of a combustible mixture being in the vicinity of the spark. This is not a problem, as long as the FIDC system is operating as intended, but it could be a problem if there were a failure of the fuel delivery system to the FVI, or a failure of the FVI itself.

Some driver impressions were noted during the chassis dynamometer tests. With both the FIDC system and the modified stock carburetor (with #42 jets) installed, the vehicle performance was very sluggish, and considerable difficulty was encountered in trying to make some of the acceleration ramps in the driving cycle. Of the three configurations tested, the stock configuration was by far the most driveable, but even the stock configuration exhibited small hesitations; a slight indication that the engine was operating too

lean. The FIDC and modified carburetor configurations required considerable throttle activity from the driver to accomplish accelerations. This type of throttle activity is of course undesireable since it adversely affects both fuel economy and emissions.

The FIDC system was developed for a 1975 "49 States" vehicle. For the purposes of the tests at JPL, an existing 1973 California vehicle and a 1975 California engine were available, and were "converted" to 1975 49 States devices wherever significant differences which might affect the test results could be identified. The modifications made are noted elsewhere in this report. The only conversion difficulty encountered was with the carburetor.

The vehicle and engine, as originally purchased, were equipped with a four-barrel carburetor set for California emission standards, while the configuration used by FIDC included a 2-barrel carburetor. Two replacemenmt carburetors were purchased through a local Chevrolet dealer parts department, but neither was a duplicate of the production carburetor used by FIDC. This was determined during the early stages of the V-8 steady-state engine tests where it was noted that the replacement carburetors operated at a richer equivalence ratio than had been measured by FIDC. Therefore, the carburetor finally used for the tests reported in Sections V and VI was assembled as follows: the bowl, venturi, main clustor assembly with nozzles, and top (air horn) assembly were borrowed from FIDC, the throttle body (base) plate assembly, power enrichment valve and jets were taken from one of the replacement carburetors, and the "stock" (#45) jets were selected so that the fuel/air ratio would match the nominal fuel/air ratio of a production carbuertor.

During the preparation for the V-8 steady state tests, the operation of the lean limit controller (LLC) was tested to determine its maximum effect; i.e., its maximum ability to provide "extra" air to the engine. The object of running these conditions was to determine the lower limit of how lean the engine could be run, when limited only by the amount of air which could be aspirated through the FIDC feed plate under the carburetor.

A second objective of running these conditions was to record emissions data for the various measured equivalence ratios so that the overall engine equivalence ratios could be inferred from the emissions data. This was necessary so that the effect, if any, of measuring the air flow through the LLC could be determined.

The results of these tests clearly indicated that there was not any effect of the operation of the LLC by connecting the LLC air source into the same measured air which feeds the carburetor. It was also observed that the maximum amount of air which can be added to the engine through the LLC feed plate is dependent upont the engine load (or manifold pressure). For moderate loads, the equivalence ratio could only be reduced from 0.89 to 0.83. At low loads, enough additional air could be added to cause the engine to misfire; $\phi = .78$ to .82. For high loads, little or no additional air could be added to the engine through the LLC. (For the purposes of these tests, high

loads are those in the 75-100 psi BMEP range, and low loads are those in the 5-25 psi BMEP range.)

The effect of the LLC solenoid bleed screw valve on emissions was recorded, and the bleed screw was adjusted according to the FIDC instructions. An "average" condition for the 1975 FTP driving cycle, 1800 RPM, 35.6 HP, and 30 degrees BTDC spark advance, was selected. Operating the engine at this steady-state condition, the emissions were recorded at one-half turn increments of the bleed screw. It was determined that about four turns in (from the full counterclockwise position) on the bleed screw produced the "best" combination of HC and $\rm NO_X$ emissions. Approximately 500 ppm HC and 800 ppm $\rm NO_X$ were recorded with the bleed screw four turns in. The bleed screw was left in this position for all subsequent tests.

SECTION IX '

CONCLUSIONS AND RECOMMENDATIONS

The FIDC system demonstrated a modest (5%) fuel consumption reduction relative to a stock vehicle when measured according to the Federal Test Procedure. This improvement in fuel consumption was accompanied by a substantial increase in hydrocarbon emissions. A larger reduction in fuel consumption (12%) was demonstrated by "leaning out" the stock engine. This leaning out, which was achieved by re-jetting the carburetor, was accompanied by a small decrease in hydrocarbons. Both these techniques for improving fuel consumption also result in increased oxides of nitrogen emissions and noticeably degraded driveability. The carbon monoxide emissions were reduced for both of the nonstock configurations.

The excessive hydrocarbons from the FIDC system appear to result primarily from the control strategy. Leaning an engine to the point of misfire must inevitably increase the hydrocarbons. The increased oxides of nitrogen are also inherent in the FIDC control strategy, since the operating equivalence ratio is near that for maximum NO_{X} production. This decrease in equivalence ratio is, of course, what produced the desirable decrease in fuel consumption.

Results of the CFR engine tests show that the FVI portion of the FIDC system does alter the combustion process and the use of the FVI allowed the CFR engine to run leaner without misfire. This positive affect on engine operation was also observed under some operating conditions for the multicylinder engine tests. The use of the FIDC system did alter the cylinder-to-cylinder distribution in the V-8 tests, but no systematic improvement could be identified.

With one exception, installing the FIDC system presented no problems. A person with modest mechanical skills should have no major difficulties, although this definitely would not be a job for a novice. The one problem encountered during installation was the placement of the "misfire detector". Some care and knowledge are required to meet the several conflicting requirements.

In the final analysis, the FIDC system will yield a modest, positive effect on fuel consumption, but at the price of increased emissions, loss of driveability, and the monetary value of the device itself. The disadvantages would seem to outweigh the advantages.

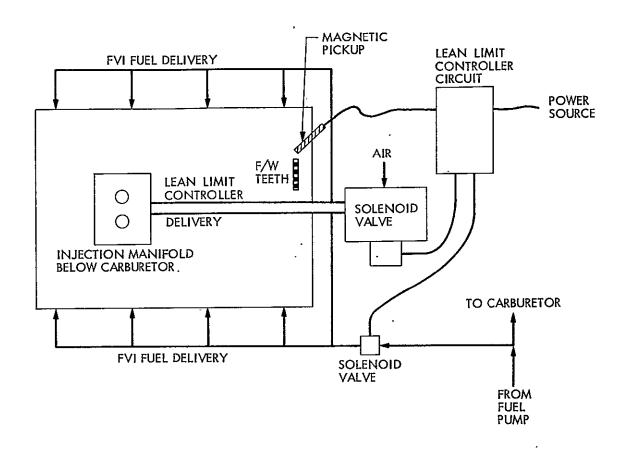


Figure 1. FVI-LLC Schematic

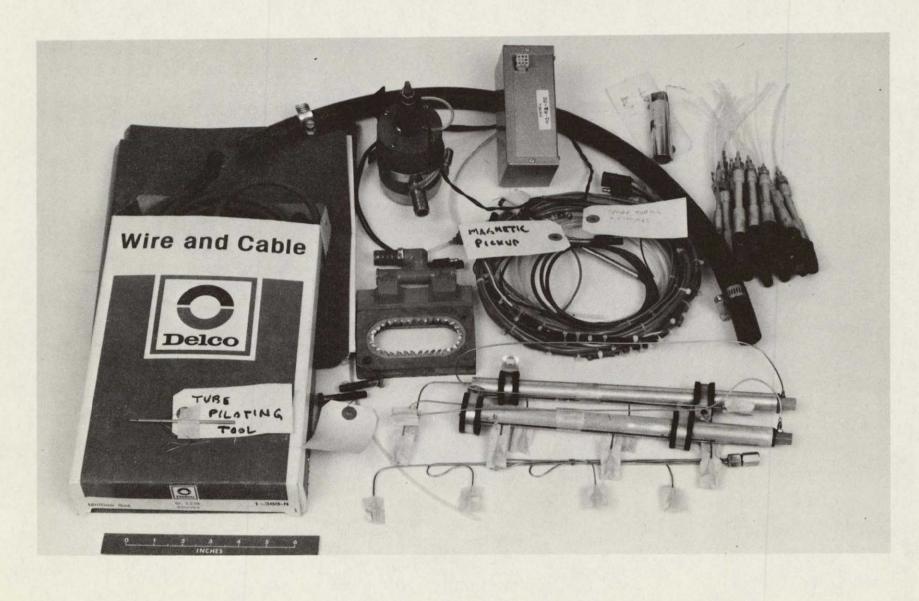


Figure 2. FIDC System Components

Figure 3. FVI

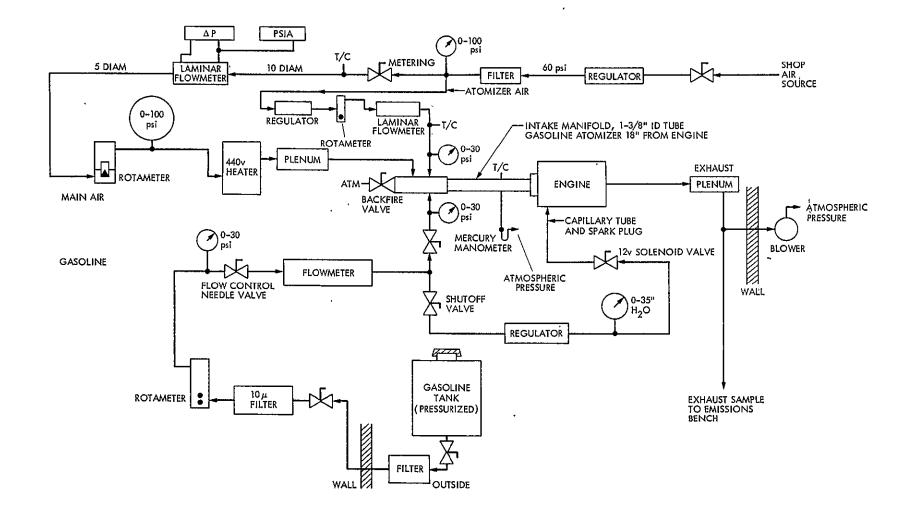


Figure 5. CFR Engine Plumbing for FIDC Tests

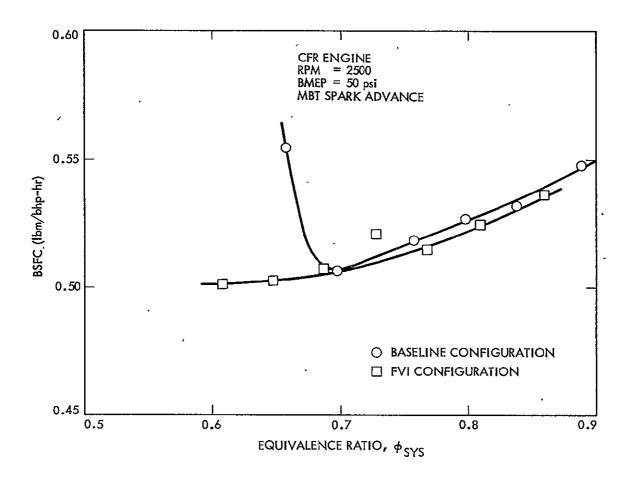
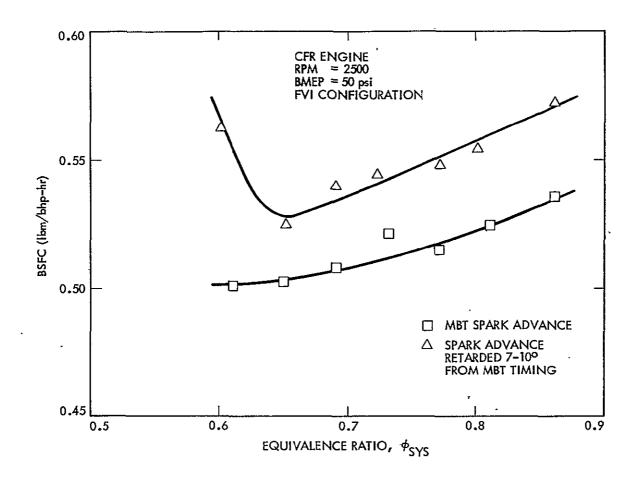



Figure 6. Fuel Consumption Versus Equivalence Ratio for the CFR Sensitivity Tests

ORIGINAL PAGE IS.
OF POOR QUALITY

Figure 7. Effect of Spark Retard on Fuel Consumption for CFR Sensitivity Tests

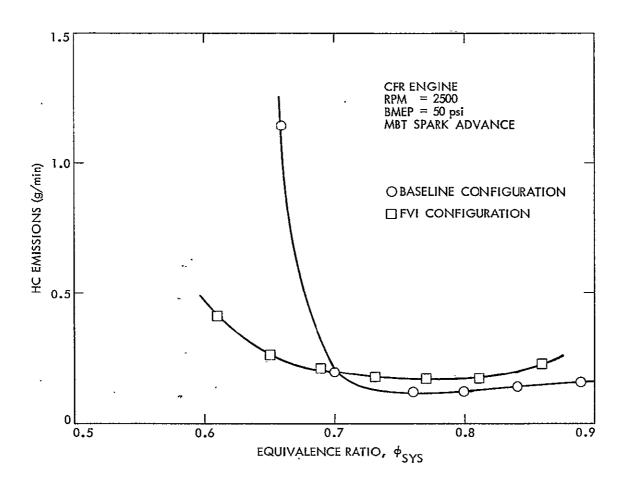


Figure 8. HC Emissions Versus Equivalence Ratio for CFR Sensitivity Tests

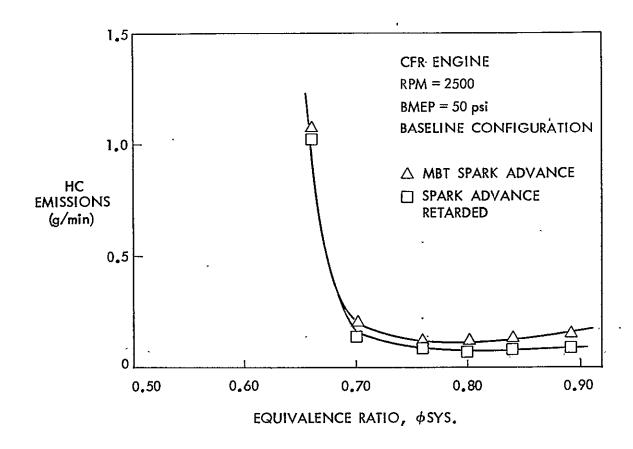


Figure 9. Effect of Spark Retard on HC Emissions for CFR Sensitivity Tests (Baseline Configuration)

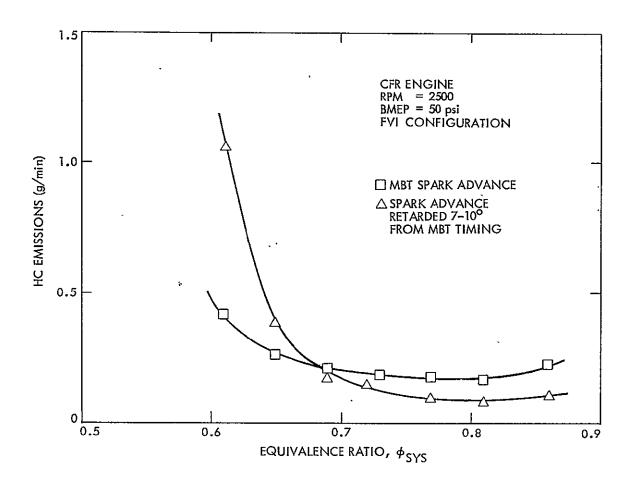


Figure 10. Effect of Spark Retard on HC Emissions for CFR Sensitivity Tests (FVI Configuration)

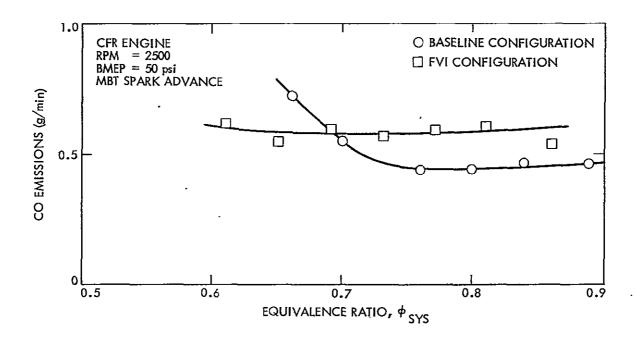


Figure 11. CO Emissions Versus Equivalence Ratio for CFR Sensitivity Tests

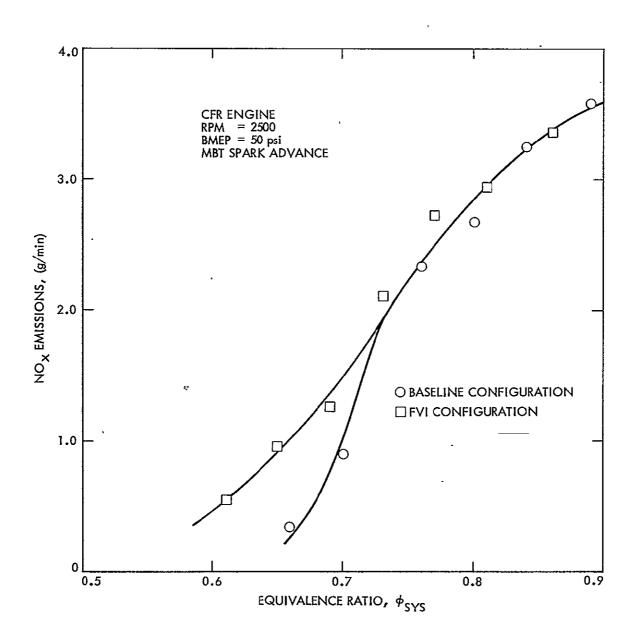


Figure 12. NO_{X} Emissions Versus Equivalence Ratio for CFR Sensitivity Tests

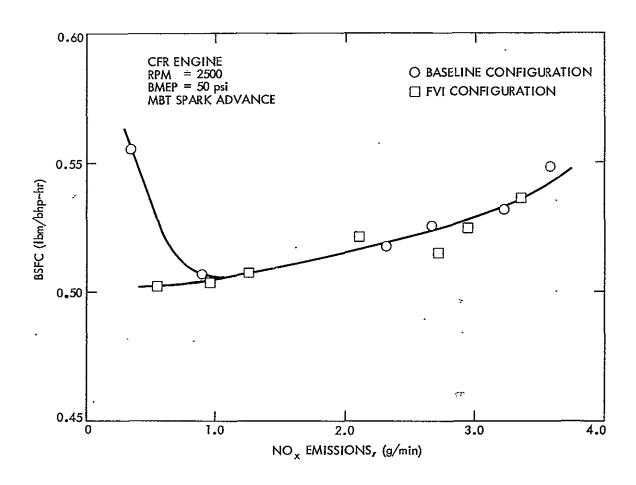


Figure 13. Fuel Consumption Versus $\mathrm{NO}_{\mathbf{X}}$ Emissions for CFR Sensitivity Tests

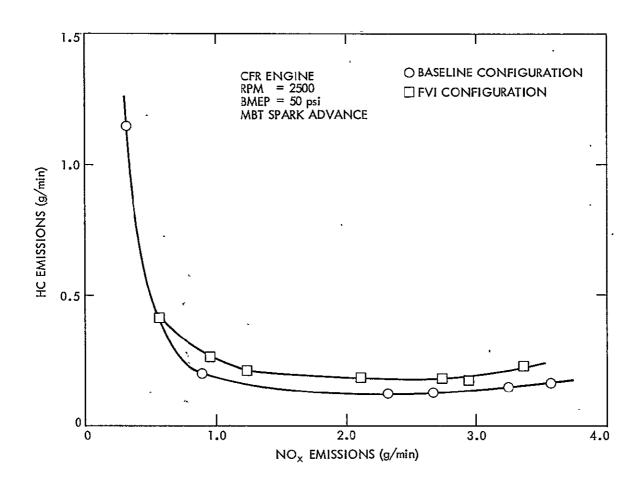


Figure 14. HC Emissions Versus NO_{X} Emissions for CFR Sensitivity Tests

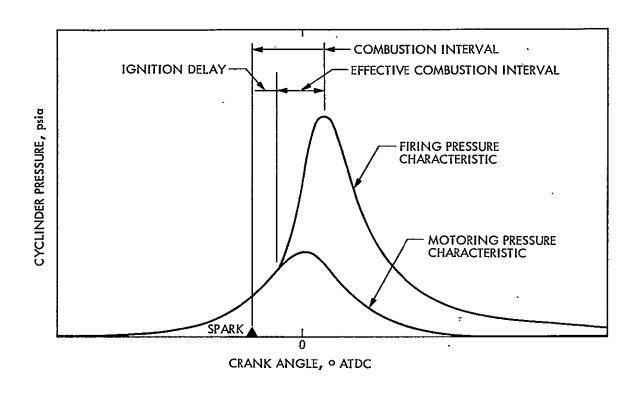


Figure 15. Definition of Ignition Delay and Combustion Interval

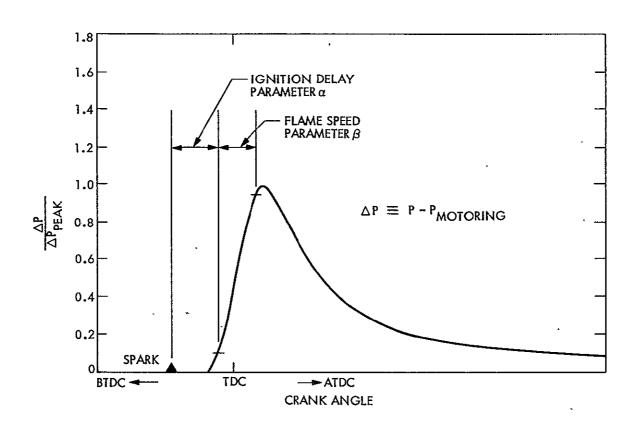


Figure 16. Definition of Ignition Delay Parameter and Flame Speed Parameter

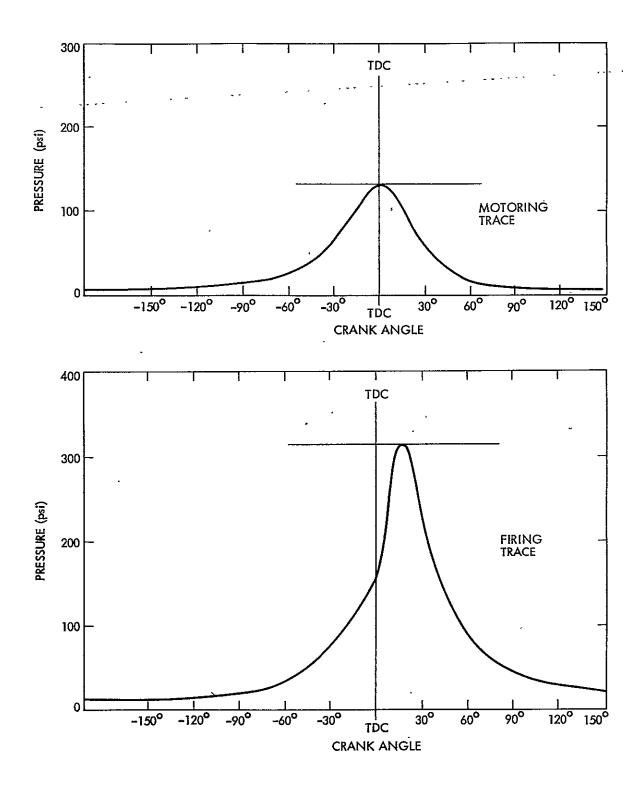
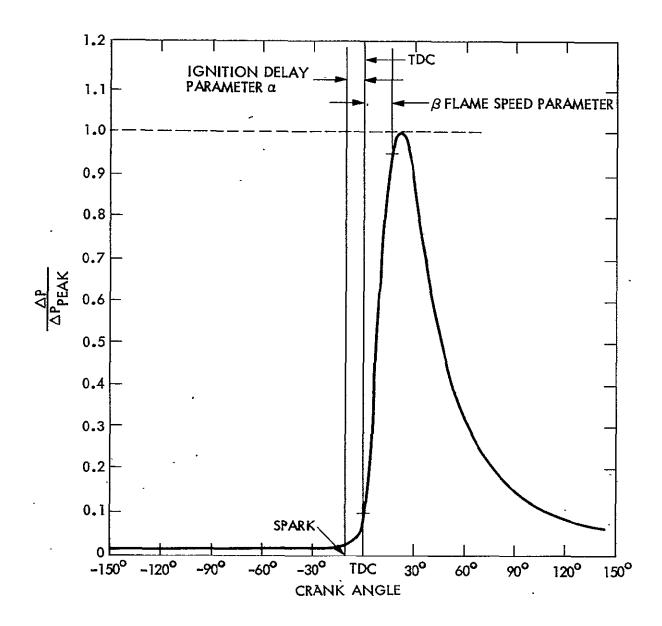



Figure 17. Firing and Motoring Pressure-Time Traces for $\dot{\text{CFR}}$ Test

ORIGINAL PAGE IS OF POOR QUALITY

Figure 18. Ignition Delay Parameter and Flame Speed Parameter for CFR Test $\,$

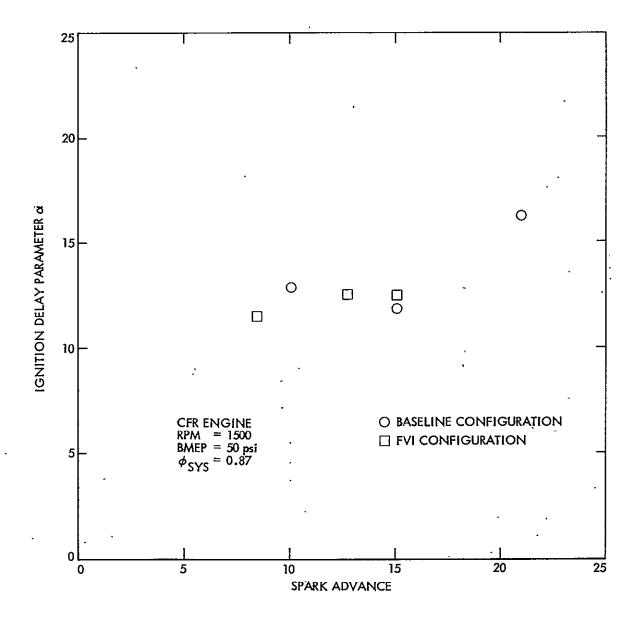


Figure 19. Ignition Delay Parameter Versus Spark Advance for CFR Tests

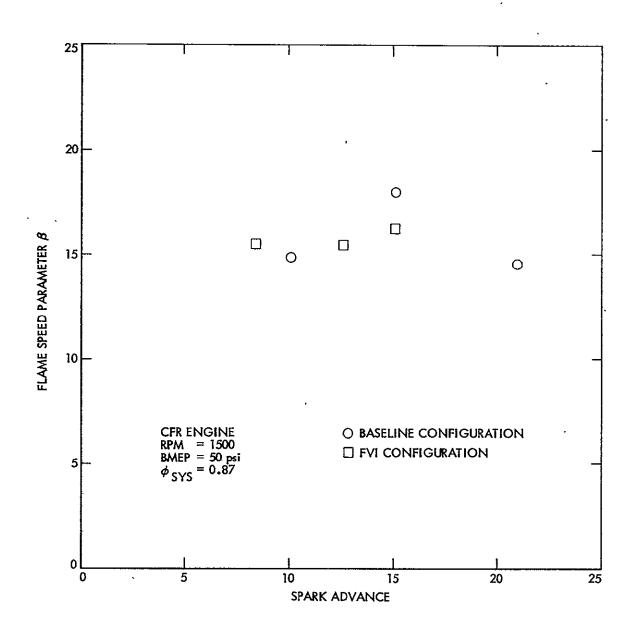


Figure 20. Flame Speed Parameter Versus Spark Advance for CFR Tests

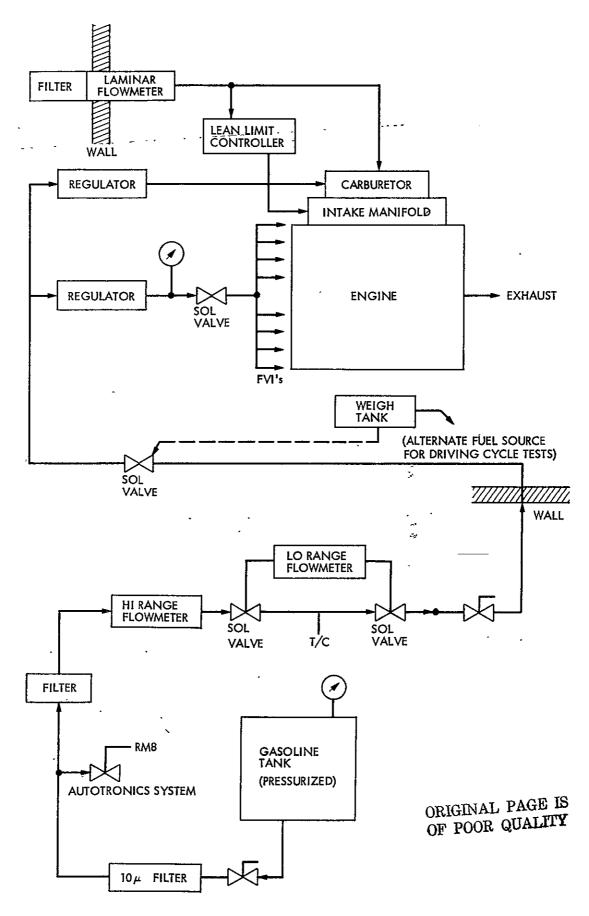
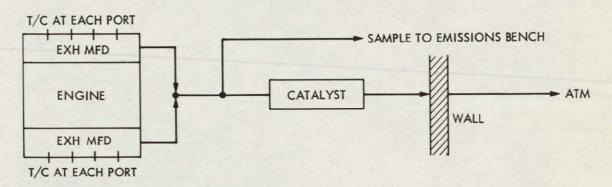
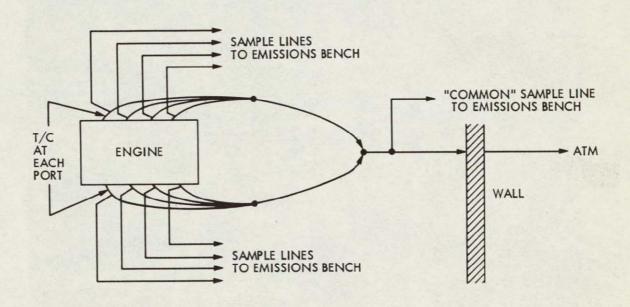




Figure 21. V-8 Engine Plumbing for FIDC Tests

EXHAUST PLUMBING FOR STEADY-STATE TESTS

EXHAUST PLUMBING FOR DISTRIBUTION TESTS

ORIGINAL PAGE IS OF POOR QUALITY

Figure 22. Exhaust Systems for Multicylinder Engine

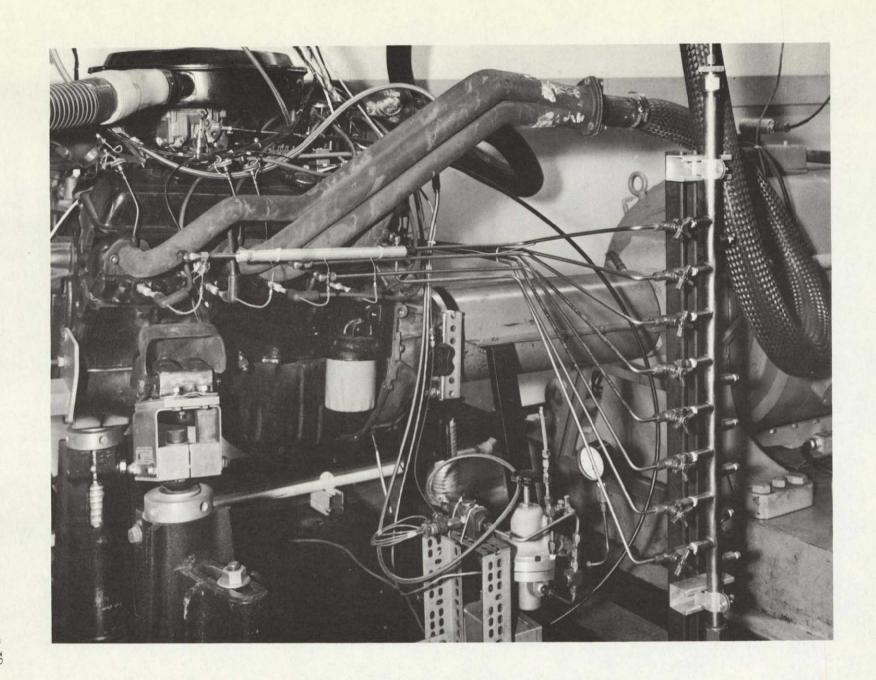


Figure 23. Multicylinder Engine

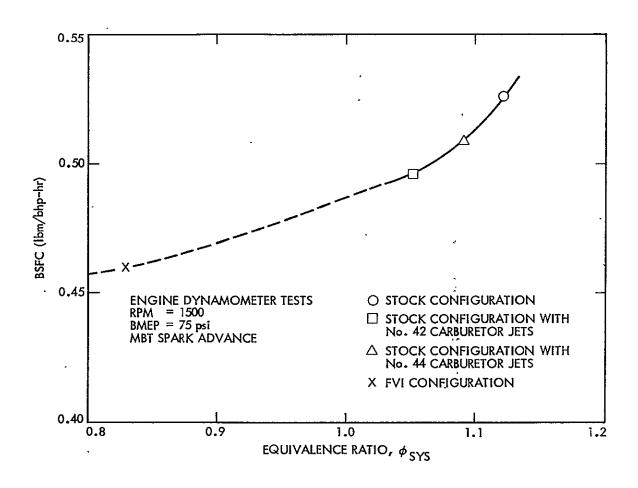


Figure 25. Fuel Consumption Versus Equivalence Ratio for EC Dynamometer Tests

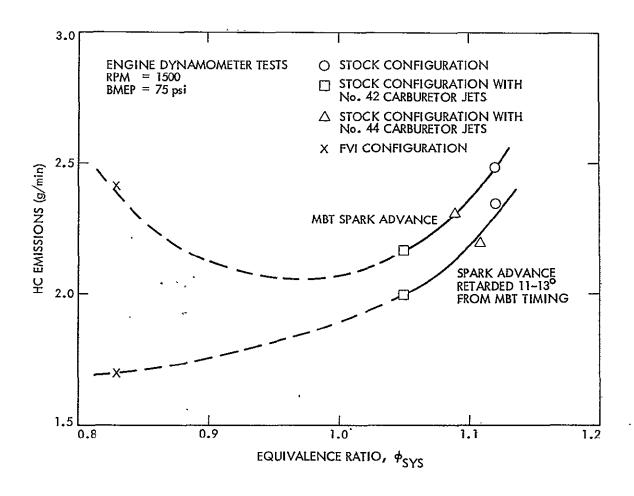


Figure 26. Effect of Spark Retard on HC Emissions for EC Dynamometer Tests

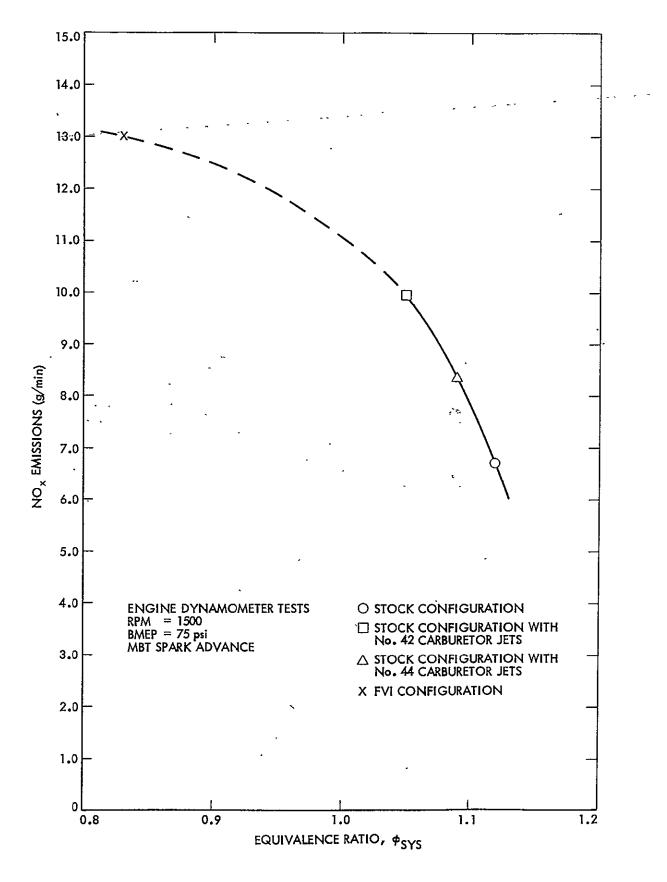


Figure 27. \cdot NO $_{\rm X}$ Emissions Versus Equivalence Ratio for EC Dynamometer Tests

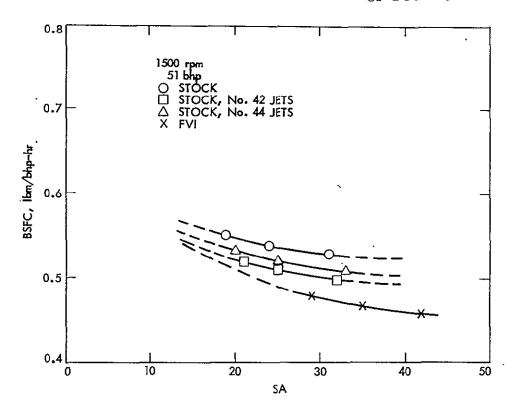


Figure 28. Fuel Consumption Versus Spark Advance for EC Dynamometer Tests

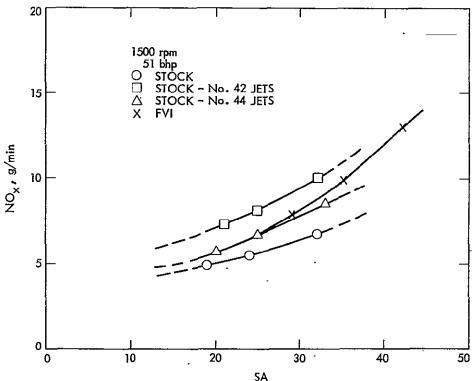


Figure 29. NO_{X} Emissions Versus Spark Advance EC Dynamometer Tests

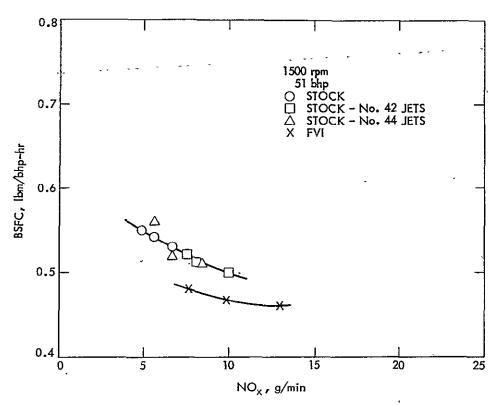
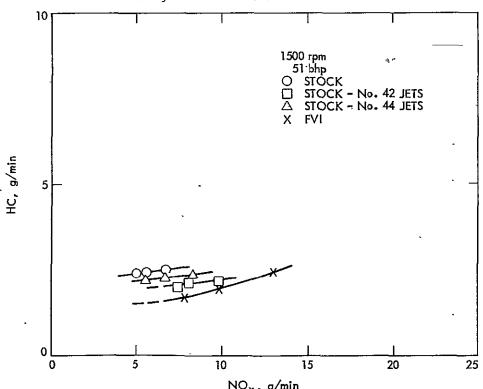



Figure 30. Fuel Consumption Versus $\mathrm{NO}_{\mathbf{x}}$ Emissions for EC Dynamometer Tests

 $${\rm NO_{x},\,g/min}$$ Figure 31. HC Emissions Versus ${\rm NO_{x}}$ Emissions for EC Dynamometer Tests

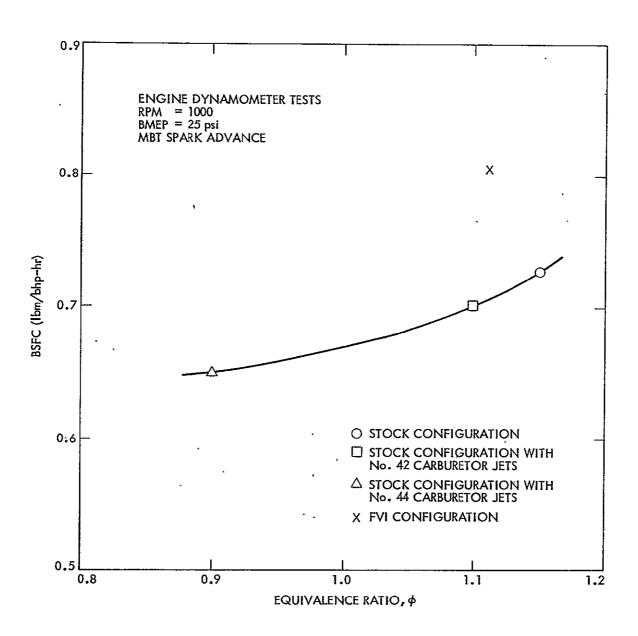


Figure 32. Fuel Consumption Versus Equivalence Ratio for EC Dynamometer Tests

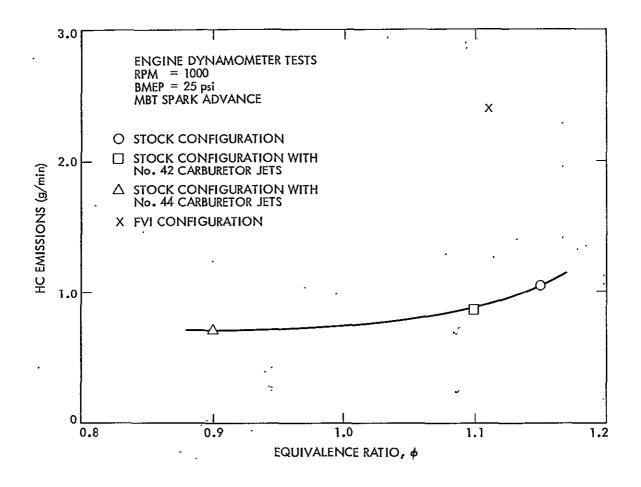


Figure 33. HC Emissions Versus Equivalence Ratio for EC Dynamometer Tests

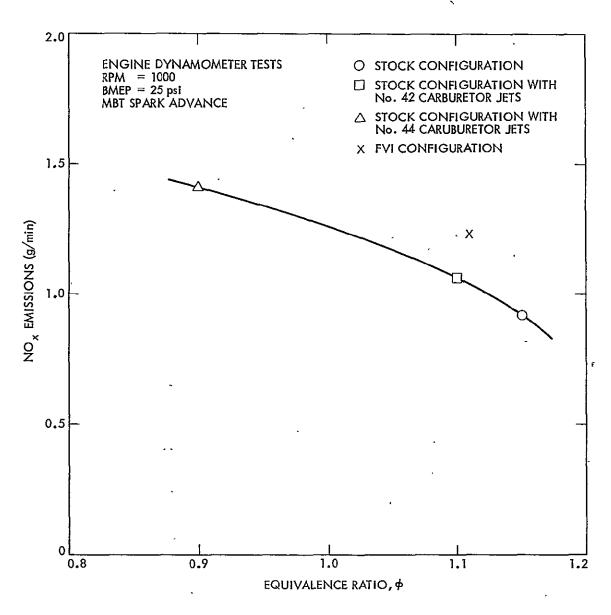


Figure 34. $\mathrm{NO}_{\mathbf{X}}$ Emissions Versus Equivalence Ratio for EC Dynamometer Tests

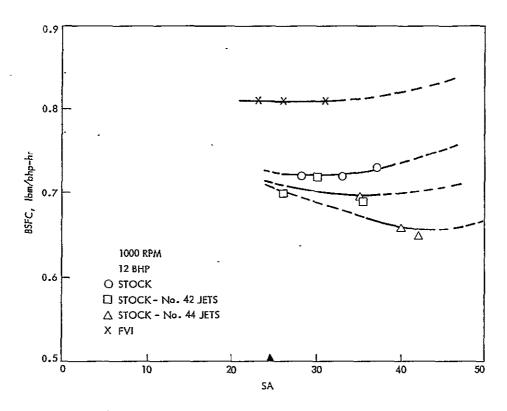


Figure 35. Fuel Consumption Versus Spark Advance for EC Dynamometer Tests

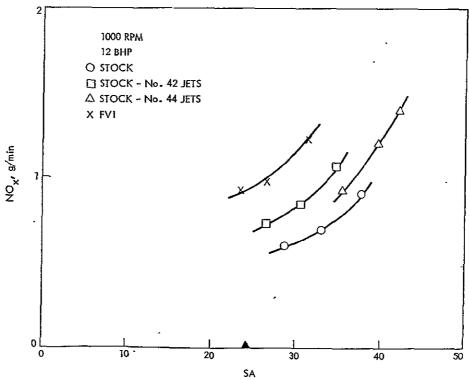


Figure 36. NO_{X} Emissions Versus Spark Advance for EC Dynamometer Tests

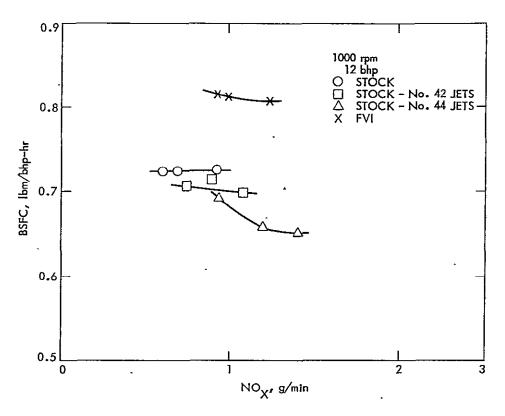


Figure 37. Fuel Consumption Versus $\mathrm{NO}_{\mathbf{X}}$ Emissions for EC Dynamometer Tests

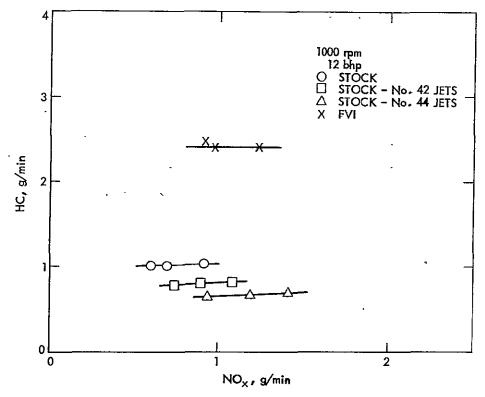


Figure 38. HC Emissions Versus $\mathrm{NO}_{_{\mathbf{X}}}$ Emissions for EC Dynamometer Tests

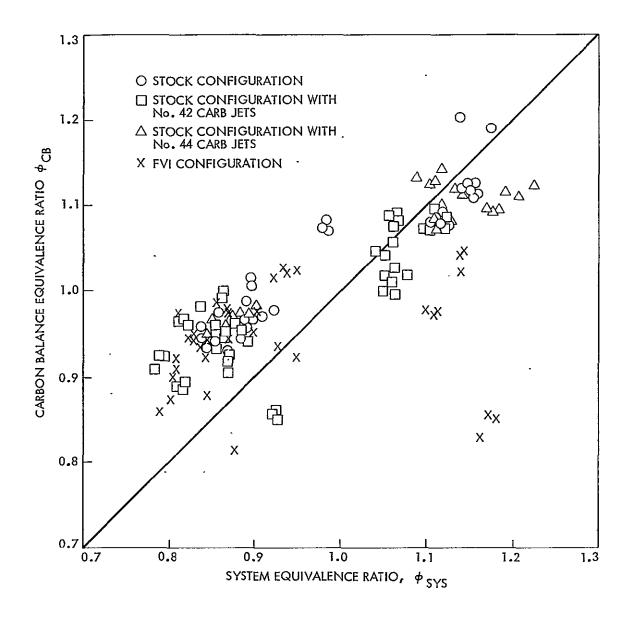


Figure 39. Comparison of System Equivalence Ratio and Carbon Balance Equivalence Ratio for EC Dynamometer Tests

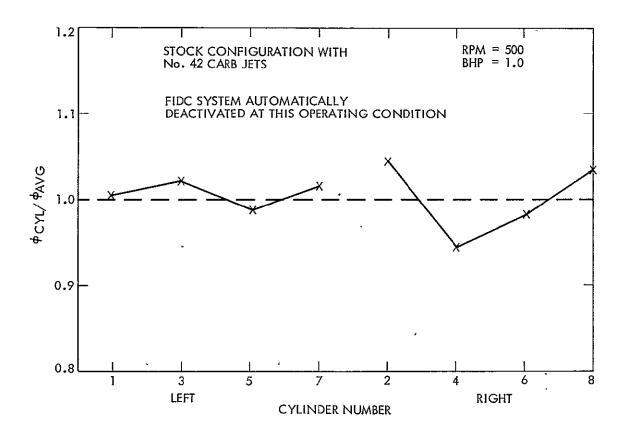


Figure 40. Cylinder-to-Cylinder Distribution of Equivalence Ratios (RPM = 500, BHP = 1.0)

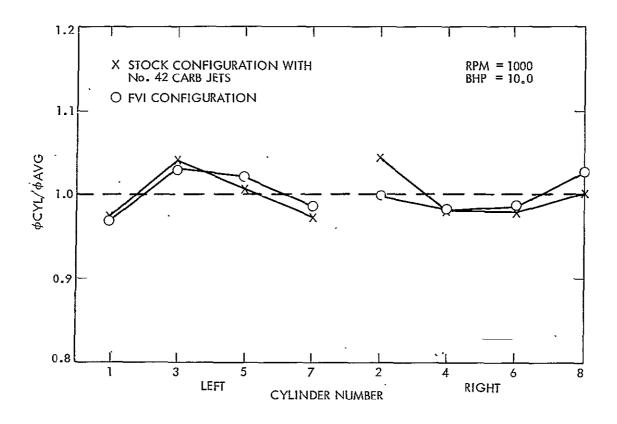


Figure 41. Cylinder-to-Cylinder Distribution of Equivalence Ratios (RPM = 1,000, BHP = 10.0)

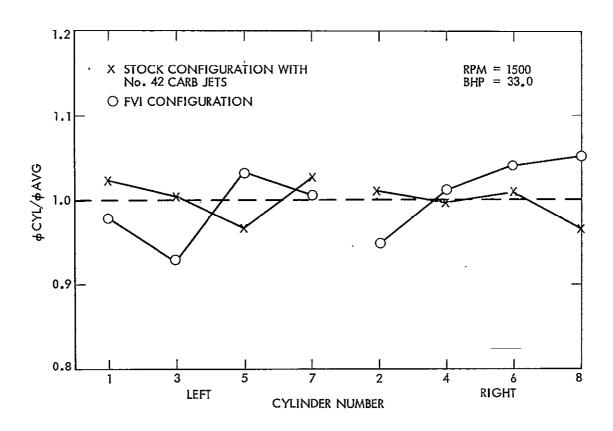


Figure 42. Cylinder-to-Cylinder Distribution of Equivalence Ratios (RPM = 1500, BHP = 33.0)

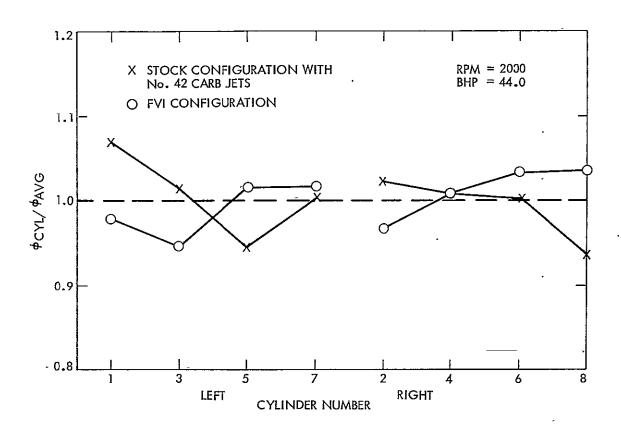


Figure 43. Cylinder-to-Cylinder Distribution of Equivalence Ratios (RPM - 2000, BHP - 44.0)

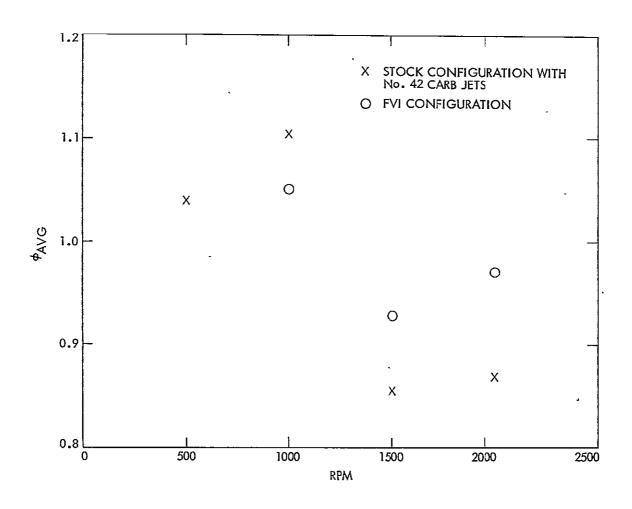


Figure 44. Average Equivalence Ratio for Distribution Tests on EC Dynamometer

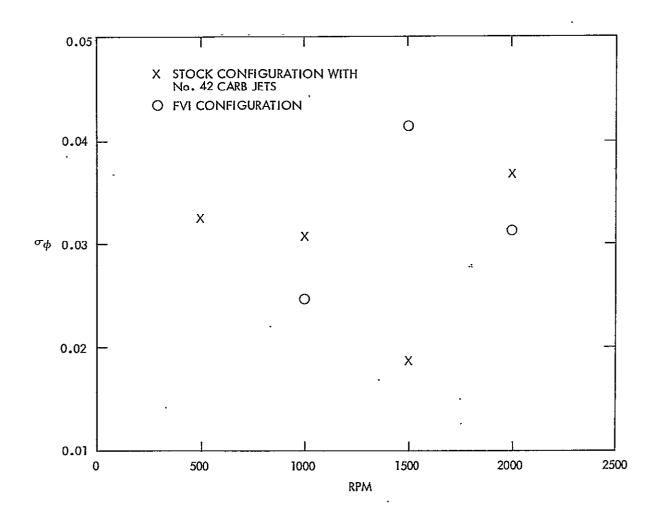
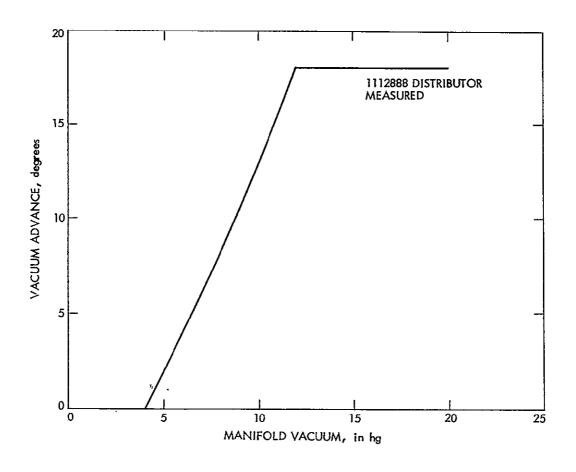



Figure 45. Standard Deviation of Equivalence Ratio for Distribution Tests on EC Dynamometer

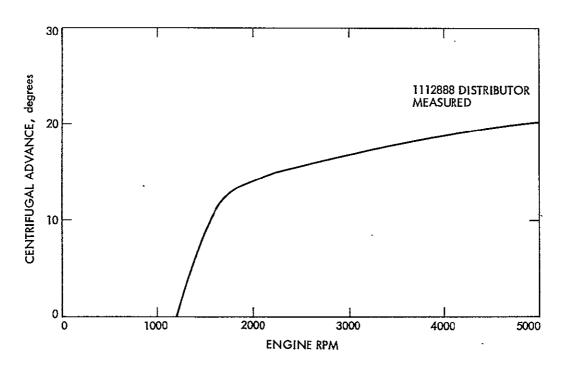


Figure 46. Vacuum and Centrifugal Advance Characteristics of Stock Distributor

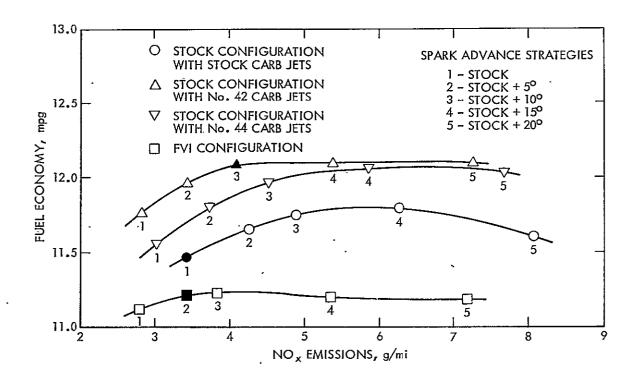


Figure 47. Predicted Urban Fuel Economy and NO $_{\rm X}$ Emissions (4500 lb Inertia Weight)

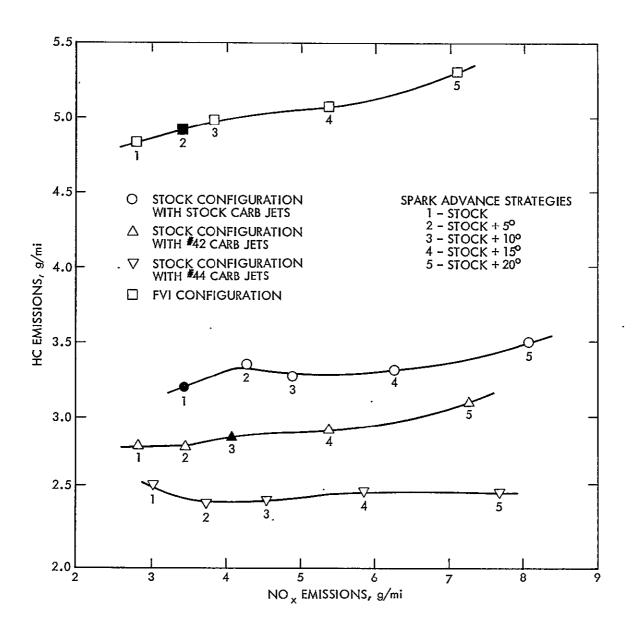


Figure 48. Predicted HC and NO_{X} Emissions for Urban Driving Cycle (4500 lb Inertia Weight)

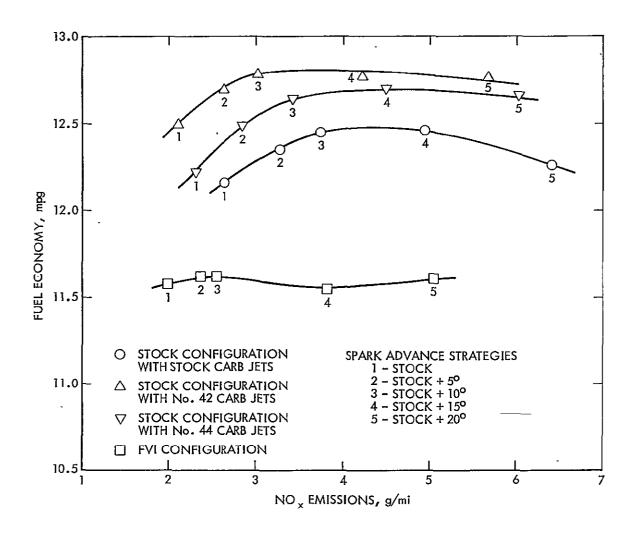
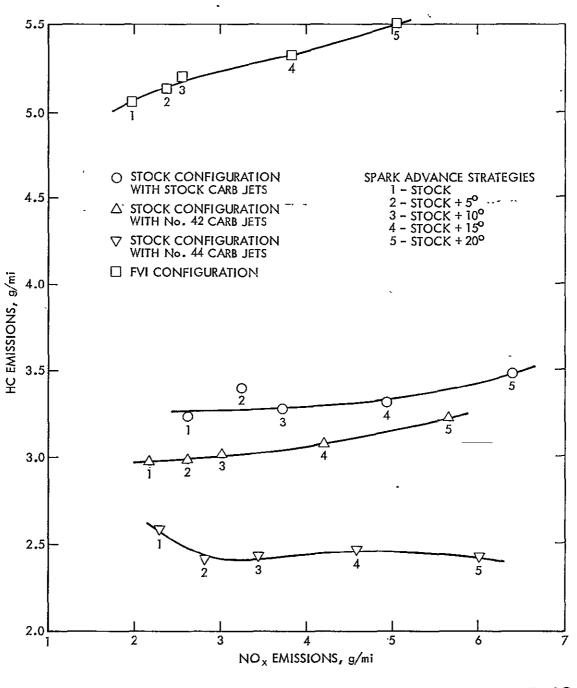



Figure 49. Predicted Urban Fuel Economy and NO $_{\rm X}$ Emissions (3500 lb Inertia Weight)

ORIGINAL PAGE IS OF POOR QUALITY

Figure 50. Predicted HC and NO_{X} Emissions for Urban Driving Cycle (3500 lb Inertia Weight)

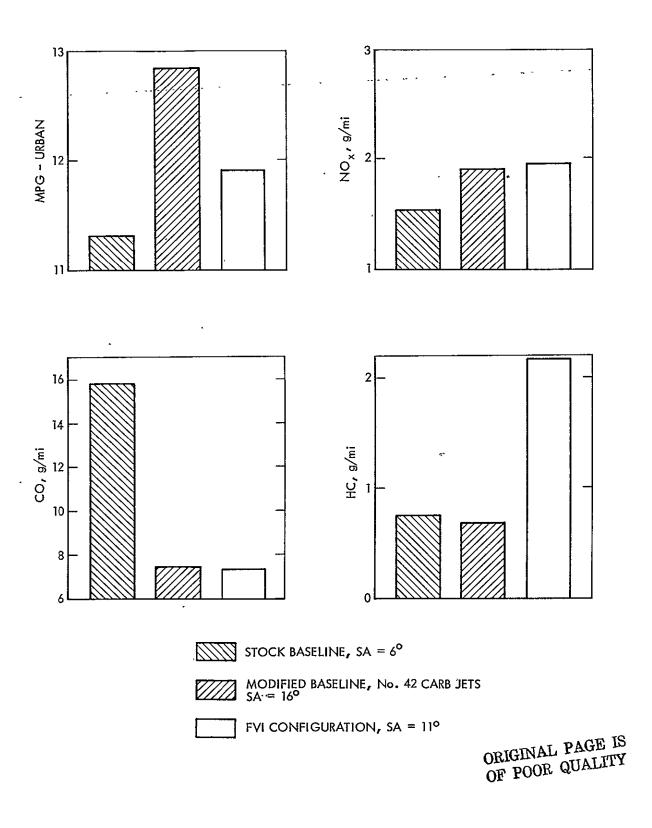


Figure 51. Urban Driving Cycle Results from Chassis Dynamometer Vehicle Tests

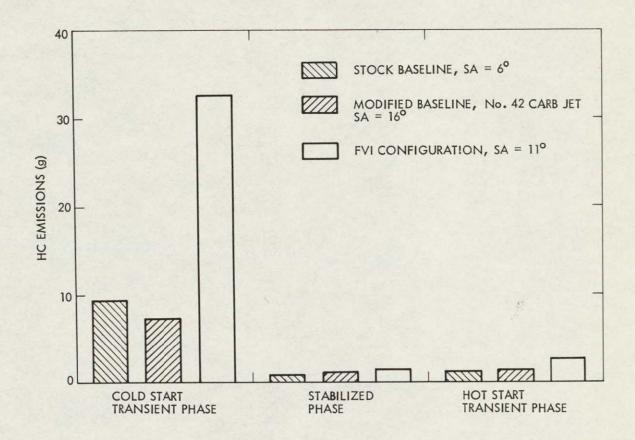


Figure 52. Urban Driving Cycle Hydrocarbon Emissions Results from Chassis Dynamometer Vehicle Tests

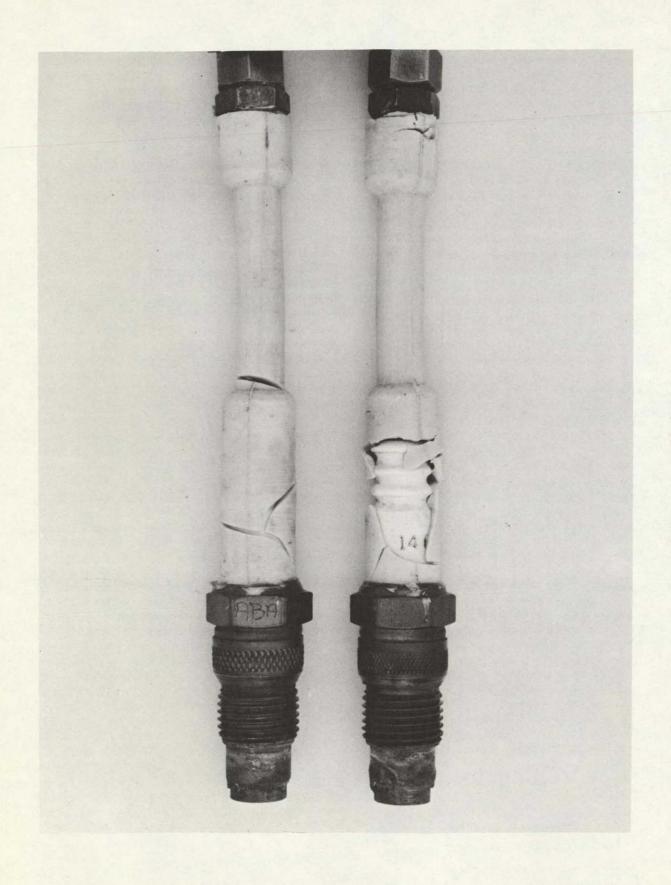


Figure 53. FVI's with Cracked Insulation. Cylinders 5, 6 V8 Engine

Table 2. CFR Sensitivity Data for FVI Configuration (2500 RPM, 50 psi BMEP)

TEST NUMBER	CONFIG	RPM	внР	SPARK ADVANCE	φ _{SYS}	BSFC (lbs/bhp-hr)	NO _x (g/min)	HC (g/min)	CO (g/min)
7164.2 7164.3 7164.4 7164.5 7164.6 7164.7 7164.8 7164.9 7165.2 7165.3 7165.4 7165.5 7165.6 7165.7 7165.8 7165.9 7165.10 7165.11 7165.12 7165.13	**************************************	2502. 2502. 2502. 2497. 2501. 2500. 2496. 2503. 2501. 2499. 2503. 2501. 2499. 2500. 2499. 2502. 2501. 2499.	8.22 8.13 7.75 8.08 7.95 7.63 8.15 7.93 7.68 8.05 7.85 8.16 8.01 7.73 8.14 8.02 8.27 8.22 7.78 7.28	24.2 20.0 14.1 25.6 21.4 16.8 28.2 22.2 18.4 30.1 24.6 21.5 31.4 28.1 24.2 36.9 32.3 29.5 43.4 39.0 35.3	0.86 0.86 0.86 0.81 0.80 0.77 0.77 0.77 0.73 0.73 0.72 0.69 0.69 0.65 0.65 0.65 0.65	0.536 0.544 0.573 0.524 0.531 0.555 0.514 0.529 0.548 0.521 0.531 0.544 0.508 0.520 0.540 0.520 0.540 0.520 0.540 0.522 0.512 0.523 0.501 0.527 0.562	3.37 2.66 1.78 2.94 2.09 1.41 2.72 1.34 1.07 2.11 1.16 0.75 1.24 0.82 0.47 0.97 0.46 0.29 0.54 0.20 0.11	0.22 0.17 0.10 0.17 0.13 0.08 0.18 0.13 0.10 0.17 0.15 0.21 0.20 0.19 0.27 0.32 0.38 0.41 0.75 1.06	0.54 0.72 0.68 0.61 0.72 0.69 0.60 0.76 0.77 0.71 0.80 0.60 0.67 0.75 0.55 0.62 0.70 0.61 0.74 0.80

F - FVI CONFIGURATION

Table 3. Ignition Delay and Flame Speed Data from CFR Tests

TEST NUMBER	CONFIG	RPM	POWER bhp	SPARK ADVANCE DEGREE BTDC	φ _{SYS}	BSFC (Ibm/bhp-hr)	NO _x	HC (g/min)	CO (g/min)	IGNITION DELAY, a DEGREES	FLAME SPEED, B DEGREES
7159.1	S	1505.	4.90	20.9	≈0.87	0.460	1.61	0.35	0.26	16.3	14.6
7159.2		1504.	4.71	15.2	≈0.87	0.479	1.30	0.25	0.28	11.8	18.0
7159.3 7159.4	S	1503. 1504.	4.57 4.89	10.1 15.0	≈0.87 0.87	0.496 0.487	0.98 1.43	0.23	0.38	12.9 12.4	14.9 16.3
7159.5	F	1503.	4.86	12.6	0.87	0.497	1.27	0.35	0.40	12.4	15.5
7159.6	F	1502.	4.58		0.86	0.517	0.90	0.32	0.53	11.5	15.5

S - BASELINE CONFIGURATION F - VFI CONFIGURATION

Table 4. Engine Data from EC Dynamometer Tests (1500 RPM, 75 psi BMEP)

TEST NUMBER	CONFIG	RPM	ВНР	SPARK ADVANCE	φ _{SYS}	BSFC (lbm/bhp-hr)	NO _x (g/min)	HC (g/min)	CO (g/min)
7299.20 7299.21 7299.22 7304.2 7304.3 7304.4 7306.2 7306.3 7306.4 7293.17 7293.18 7293.19	S S S S S S S S S S S S S S S S S S S	1500. 1500. 1500. 1499. 1499. 1497. 1498. 1502. 1497. 1497.	51.88 51.59 51.31 51.32 51.56 51.49 51.27 51.51 51.34 51.13 51.22 50.51	31.4 24.0 19.5 32.4 25.3 21.4 32.7 25.3 20.2 42.5 34.9 29.5	1.12 1.12 1.05 1.06 1.05 1.09 1.10 1.11 0.83 0.83 0.83	0.527 0.537 0.552 0.496 0.509 0.516 0.508 0.518 0.533 0.460 0.465 0.476	6.71 5.54 4.92 9.98 8.05 7.46 8.35 6.64 5.58 12.93 9.90 7.77	2.49 2.43 2.35 2.16 2.13 1.99 2.31 2.30 2.19 2.41 1.89 1.70	72.2 73.0 73.7 30.8 35.7 33.7 48.3 57.2 61.6 2.4 2.7 3.1

S - STOCK CONFIGURATION S1 - STOCK CONFIGURATION WITH #42 CARBURETOR JETS S2 - STOCK CONFIGURATION WITH #44 CARBURETOR JETS F - FVI CONFIGURATION

TEST NUMBER	CONFIG	RPM	POWER bhp	SPARK ADVANCE DEGREE BTDC	^ф sys	BSFC (Ibm/bhp-hr)	NO _x (g/min)	HC (g/min)	CO (g/min)
7300.17 7300.18 7300.19 -7304.11 7304.12 7304.13 7306.11 7306.12 7306.13 7293.11 7293.12 7293.13	S S S S S S S S S S S S S S S F F F	999. 997. 1001. 999. 999. 999. 997. 997. 996.	12.17 12.19 12.40 12.38 12.04 12.52 12.60 12.49 11.85 12.25 12.17 12.25	37.4 32.9 28.7 34.5 30.5 26.2 42.0 39.8 35.3 31.1 26.4 23.2	1.15 1.14 1.10 1.11 1.10 0.90 0.90 0.90 1.11 1.11	0.726 0.722 0.721 0.698 0.716 0.704 0.650 0.657 0.692 0.806 0.811	0.91 0.69 0.60 1.07 0.84 0.73 1.40 1.19 0.93 1.23 0.98 0.93	1.02 1.01 1.01 0.83 0.80 0.79 0.70 0.69 0.67 2.40 2.40 2.45	16.7 16.8 17.6 8.1 8.3 8.4 0.8 0.9 0.9 11.0 10.8

Table 5. Engine Data from EC Dynamometer Tests (1000 RPM, 25 psi BMEP)

S - STOCK CONFIGURATION S1 - STOCK CONFIGURATION WITH #42 CARBURETOR JETS S2 - STOCK CONFIGURATION WITH #44 CARBURETOR JETS F - FVI CONFIGURATION

Table 6. Statistical Data for Distribution Tests

DISTRIBUTION TESTS

	!	STC	CK .	FVI			
RPM	ВНР	φ _{AVG}	σ_{ϕ}	^ф AVG	σφ		
500	1.0	1.0402	0.0327	*	_*_		
1000	11.0	1.1026	0:0307	1.0504	0.0248		
1500	33.0	0.8529	0.0188	0.9265	0.0415		
2000	44.0	0.8689	0.0367	0.9702	0.0314		

^{*}FIDC SYSTEM AUTOMATICALLY DEACTIVATED AT THIS OPERATING CONDITION

Table 7. Urban Driving Cycle Predictions Based on EC Dynamometer Data

		4	500 lb. INERTIA	4 WT.	3500 lb. INERTIA WT.			
CONFIG	SPARK ADVANCE	MPG	NO _{x (g/mi)}	HC (g/mi)	MPG	NO _{x (g/mi)}	HC (g/mi)	
S S S S S S S S S S S S S S S S S S S	STOCK (6° BTDC) STOCK + 5° STOCK + 10° STOCK + 15° STOCK + 20° STOCK STOCK + 5° STOCK + 10° STOCK + 20° STOCK + 15° STOCK + 20° STOCK + 5° STOCK + 5° STOCK + 15° STOCK + 15° STOCK + 15° STOCK + 20° STOCK + 20° STOCK + 5° STOCK + 10° STOCK + 15° STOCK + 15° STOCK + 15° STOCK + 20°	11.47 11.66 11.76 11.80 11.61 11.76 11.97 12.08 12.10 12.10 11.56 11.80 11.97 12.03 12.02 11.13 11.22 11.26 11.21	3.45 4.28 4.89 6.28 8.08 2.82 3.47 4.05 5.39 7.27 3.03 3.74 4.54 5.85 7.69 2.80 3.42 3.83 5.36 7.10	3.20 3.36 3.25 3.32 3.51 2.81 2.80 2.88 2.94 3.12 2.56 2.43 2.45 2.45 2.45 2.45 2.45 2.45 2.51 2.50 4.84 4.91 4.99 5.08 5.32	12.16 12.34 12.45 12.46 12.27 12.50 12.69 12.78 12.76 12.76 12.23 12.48 12.65 12.65 11.58 11.58 11.53 11.53 11.55 11.55	2.63 3.27 3.72 4.93 6.40 2.09 2.62 3.02 4.21 5.68 2.30 2.83 3.43 4.58 6.02 1.99 2.37 2.54 3.81 5.05	3.24 3.40 3.26 3.32 3.50 2.97 2.97 3.03 3.08 3.24 2.59 2.42 2.43 2.48 2.43 5.07 5.14 5.22 5.33 5.56	

S - STOCK CONFIGURATION
S1 - STOCK CONFIGURATION WITH #42 CARBURETOR JETS
S2 - STOCK CONFIGURATION WITH #44 CARBURETOR JETS
F - FVI CONFIGURATION

Table 8. Urban Driving Cycle Results for Stock Baseline Based on Chassis Dynamometer Tests

TEST	MPG -	URBAN*	NO _× **	CO**	HC**	
NUMBER	WT C.B.		(g/mi)	(g/mi)	(g/mi)	
15	11.60	12.48	1.43	17.12	0.73	
· 16	11.38	12.16	1.55	12.76	0.55	
17	j1.15	11.90	1.53	18.99	0.95	
18	11.14	11.97	1.60	14.65	0.75	
AVERAGE	11.32	12.13	1.53	15.88	0.74	

^{*} EPA ESTIMATED MILEAGE FOR THIS VEHICLE IS 13 mpg

NO_X 3.1 g/mi CO 15 g/mi HC 1.5 g/mi

^{** 1975} FEDERAL STANDARDS

Table 9. Urban Driving Cycle Results for Modified Baseline Based on Chassis Dynamometer Tests

ORIGINAL PAGE IS OF POOR QUALITY

TEST	MP.G -	URBAN	NO _x	СО	НС
NUMBER	WT	C.B.	(g/mi)	(g/mi)	(g/mi)
8	12.75	13.69	1.98	8.34	0.70
9	12.79	13.89	1.90	7.69	0.63
10	12.73	13.90	1.87	7.69	0.66
11	13.02	14.04	1.87	6.36	0.64
12	12.88	13.94	1.90	6.62	0.66
AVERAGE	12.83	13.89	1.90	7.34	. 0.66

Table 10. Urban Driving Cycle Results for FVI Configuration Based on Chassis Dynamometer Tests

TEST	MPG -	URBAN	NOx	со	НС	
NUMBER	WT C.B.		(g/mi)	(g/mi)	(g/mi)	
3	11.93	12.80		8.30	2.92	
5 .	11.74	12.64	1.90	4.53	1.58	
6	1,1.95	12.54	1.95	7.14	1.58	
7	11.97	12.54	1.98	9,08	2.68	
AVERAGE	11.90	12.63	1.94	7.26	2.19	

Table 11. Measured Versus Predicted Results for Urban Driving Cycle

ORIGINAL PAGE IS OF POOR QUALITY

ENGINE CONFIGURATION	PARAMETER	PREDICTED VALUE BASED ON EC DYNO. ENGINE DATA	MEASURED VALUE FROM CHASSIS DYNO. VEHICLE TEST
STOCK BASELINE SA = 6°	MPG	11.47	11.32 WEIGHT 12.13 CARBON BALANCE
	NO _x (g/mi) CO (g/mi) HC (g/mi)	3.45 3.20	1.53 15.88 0.74
MODIFIED BASELINE No. 42 CARB JETS SA = 160	MPG	12.08	12.83 WEIGHT 13.89 CARBON BALANCE
34 10	NO _× (g/mi) CO (g/mi) HC (g/mi)	4.09 2.88	1.90 7.34 0.66
FVI CONFIGURATION SA = 110	MPG	11.22	11.90 WEIGHT 12.63 CARBON BALANCE
	NO x (g/mi) CO (g/mi) HC (g/mi)	3.42 4.92	1.94 7.26 2.19

APPENDIX A

CFR DATA

DATE DAY TEST NO.	RPM	внр	SA	φ _{SYS}	BSFC	NO _x	CO gm/min	HC gm/min	a IGNITION DELAY	B FLAME SPEED	CONFIG- URATION	вмер
6/8/77	1505	4.00	20.0		0.4/00	1 /14	0.040	0.050	16.31°	14 400		
7159.1	1505.	4.90	20.9	0	0.4602	1.614	0.262	0.352	1	14.62°	S	50
7159.2	1504.	4.71	15.2	0	0.4788	1.295	0.280	0.251	11.810	18.0°	S	50
7159.3	1503.	4.57	10.1	0	0.4963	0.975	0.375	0.227	12.940	14.910	S	50
7159.4	1504.	4.89	15.0	0.87	0.4871	1.434	0.348	0.369	12.38°	16.31°	F	50
7159.5	1503.	4.86	12.6	0.87	0.4974	1.274	0.406	0.352	12.38°	15.47°	F	50
7159.6	1502.	4.58	8.4	0.86	0.5171	0.899	0.530	0.321	11.53°	15.47°	F	50
7159.7	1504.	4.82	20.1	0.85	0.4817	1.694	0.367	0.368			F	50
7159.8	1505.	4.81	17.1	0.81	0.4772	1.273	0.377	0.337			F	50
7159.9	1504.	4.70	14.3	0.81	0.4900	1.099	0.472	0.360			F	50
7159.10	1503.	4.68	12.0	0.82	0.5000	0.891	0.498	0.336			F	50
7159.11	1505.	4.92	21.1	0.77	0.4720	1.232	0.316	0.326			F	50
7159.12	1503.	4.82	15.6	0.77	0.4783	0.822	0.400	0.332			F	50
7159.13	1503.	4.59	12.6	0.77	0.5044	0.571	0.509	0.314			F	50
6/9/77 7160.1	1506.	5,06	21.1	0.90	0.4700	1.937	0.287	0.347			F	50
7160.2	1502.	4.79	21.9	0.77	0.4492	1.285	0.330	0.315			; F	50
7160.3	1505.	4.73	18.7	0.77	0.4580	1.054	0.363	0.332			F	50
7160.4	1505.	4.58	13.3	0.77	0.4787	0.511	0.479	0.331			F	50
7160.5	2007.	6.60	20.2	0.84	0.4887	2.446	0.508	0.383	"		F	50
7160.6	2001.	6.51	14.5	0.85	0.4990	1.806	0.686	0.384		į	F	50
7160.7	1999.	6.08	10.9	0.85	0.5184	1.320	0.789	0.270			F	50
7160.8	2001.	6.42	21.1	0.82	0.4733	2.291	0.522	0.382			F	50
7160.9	2001.	6.28	16.6	0.82	0.5007	1.718	0.669	0.349			F	50
7160.10	1998.	6.08	12.0	0.82	0.5215	1.170	0.887	0.243			F	50
7160.11	2000.	6.45	21.0	0.76	0.4834	1.605	0.605	0.334			F	50
6170.12	1999.	6.36	17.1	0.77	0.4920	1.153	0.747	0.278			F	50
7160.13	1995.	6.82	14.2	0.76	0.6095	1.023	0.747	0.250			F	50
7160.14	2006.	6.59	25.1	0.75	0.4772	1.844	0.456	0.324			F	50
7160.15	2006	6.52	18.9	0.75	0.4829	1.014	0.436	0.279			F	50
			1	0.,3	J.7027	1.017	0.020	0,4/7			Г	30

			•	, -						····
DATE DAY TEST NO.	RPM	внр	SA	φ _{SYS}	BSFC	NO _x	CO gm/min	HC gm/min	вмер	CONFIG- URATION
6/9/77										
7160.16	2005.	6.29	15.2	0.75	0.5017	0.732	0.756	0,226	50	F
7160.17	2007.	6.69	27.5	0.71	0.4668	1.405	0.456	0.323	<i>5</i> 0	F
7160.18	2007.	6.54	22.1	0.71	0.4806	0.779	0.549	0.291	50	F
7160.19	2007.	6.51	18.1	0.71	0.4836	0.430	186.0	0.253	50	F
7160.20	2006.	6.51	30.7	0.66	0.4601	0.506	0.473	0.334	50	F
7160.21	2005.	6.36	26.1	0.66	0.4709	0.397	0.527	0.373	50	F
7160.22	2001.	6.06	22.4	0.66	0.4900	0.210	0.591	0.382	50	F
7160.23	2007.	6.58	36.0	0.62	0.4520	0.452	0.482	0.393	50	F
7160.24	2006.	6.39	31.1	0.62	0.4657	0.274	0.525	0.455	50	F
7160.25	2004.	6.11	28.3	0.62	0.4886	0.162	0.564	0.505	50	F
7160.26	2007.	6.81	45.1	0.58	0.4462	0.541	0.511	0,602	50	F
7160.27	2007.	6.48	38.4	0.58	0.4694	0.139	0.606	0.860	<i>5</i> 0	F
7160.28	2005.	6.08	33.4	0.57	0.5023	0.057	0.704	1.097	50	F
6/13/77 7164.1	1500.	4.93	21.3	0.87	0.4840	1.986	0.340	. 0.422	50	F
7164.2	2502.	8.22	24.2	0.86	0.5363	3.372	0.543	0.216	50	F
7164.3	2502.	8.13	20.0	0.86	0.5439	2.663	0.716	0.166	50 50	F
7164.4	2497.	7.75	14.1	0.86	0.5734	1.781	0.677	0.096	50	F
7164.5	2501.	8.08	25.6	0.81	0.5238	2.935	0.613	0.171	— ₅₀ -	F
7164.6	2500.	7.95	21.4	0.80	0.5313	2.086	0.718	0.130	50	F
7164.7	2496.	7.63	16.8	0.80	0.5551	1.411	0.685	0.077	50 50	F
7164.8	2503.	8.15	28.2	0.77	0.5136	2.724	0.598	0.182	50	F F
7164.9	2501.	7.93	22.2	0.77	0.5294	1.336	0.756	0.131	50	F
7164,10	2498.	7.68	18.4	0.77	0.5482	1.071	0.794	0.095	50	F
6/14/77			,							
7165.1	1502.	4.91	21.5	0.85	0.4864	1.976	0.359	0.362	50	F
7165.2	2503.	8.23	30.1	0.73	0.5211	2.112	0.566	0.192	. 50	F
7165.3	2501.	8.05	24.6	0.73	0.5308	1.162	0.711	0.168	50	F
7165.4	2499.	7.85	21.5	0.72	0.5438	0 .74 9	0.802	0.148	50	ļ
7165.5	2503.	8.16	31.4	0.69	0.5078	1,239	0.597	0.211	50	

DATE DAY TEST NO.	RPM	ВНР	SA	φ _{SYS}	BSFC	NO _x	CO gm/min	HC gm/min	ВМЕР	CONFIG- URATION
6/14/77	0507	0.01	00.1		0.5104	0.015	0.440	0.000	50	_
7165.6	2501.	8.01	28.1	0.69	0.5196	0.815	0.669	0.202	50	F
7165.7	2499.	7.73	24.2	0.69	0.5404	0.472	0.751	0.186	50	F
7165.8	2500.	8.14	36.9	0.65	0.5018	0.968	0.554	0.274	50	F
7165.9	2499.	8.02	32.3	0.65	0.5115	0.460	0,623	0.317	50 50	F .
7165.10	2502.	8.27	29.5	0.65	0.5225	0.290	0.696	0.376	50	! !
7165.11	2501.	8.22	43.4	0.61	0,5005	0.543	0.614	0.406	50	F
7165.12	2498.	7.78	39.0	0.60	0.5268	0.197	0.738	0.750	50	F
7165.13	2490.	7.28	35.3	0.60	0.5622	0.111	0.802	1.059	50 75	F T
7165.14	1504.	7.22	14.5	0.86	0.4425	2.770	0.347	0.489	75	
7165.15	1503.	7.03	10.0	0.86	0,4535	2,242	0.410	0.549	75 ~~	F
7165.16	1496.	5.37	7.2	0.85	0.5914	1,888	0,452	0.874	50	F
6/15/77 7166.2	1499.	7.40	16.0	0.82	0.4419	2.955	0,328	0.481	75	F
7166.3	1500.	7.23	10.9	0.82	0.4542	2.227	0.397	0.582	75	F
7166.4	1500.	6.84	7.8	0.82	0.4807	1.615	0.474	0.944	75	₽ ¦
7]66.5	1501.	7.38	16.1	0.78	0,4393	2,391	0.346	0.454	75	F
7166.6	1496.	6.35	12.8	0.78	0,5078	1.669	0,362	0.992	75	F
7166.7	1501.	7.21	17.4	0.75	0,4508	2,005	0,346	0.789	75	F }
7166.8	1501.	7.55	22.5	0.70	0,4235	1.776	0.348	0.422	75	F
7166.9	1502.	7.34	20.3	0.70	0.4359	1.391	0,357	0.549	75	F
7166.10	1501.	7.53	25.4	0.66	0,4161	0,923	0.377	0.398	75	F
7166.1.1	1500.	7.04	22.2	0.66	0.4439	0,555	0.368	1.154	75	F
7166.12	1500.	4.88	21.0	0.86	0.4761	1.939	0.298	0.403	50	s
7166.13	1503.	4.96	21.2	0.90	0.4885	1.830	0.217	0.291	50	s :
7166.14	1503.	4.99	21.4	0.87	0.4702	1.717	0.227	0.270	50	s
7166.15	1502.	4.94	16.0	0.85	0,4810	1.132	0.294	0.262	50	s
7166.16	1502.	4.80	12.9	0.86	0.4969	0.862	0.371	0.253	50	s J
7166.17	1503.	4.83	21.3	0.82	0.4695	1.334	0.247	0,250	50	s
7166.18	1501.	4.77	19.5	0.82	0,4751	1,116	0.270	0.251	50	s

DATE DAY TEST NO.	RPM	внр	SA	φ _{SYS}	BSFC	NO _x	CO gm/min	HC gm/min	ВМЕР	CONFIG- URATION
6/15/77			-							-
7166.19	1500.	4.54	14.5	0.82	0.4990	0.665	0.370	0.238	50	· S
7166.20	1502.	4.84	21.9	0.77	0.4643	0.857	0.280	0.252	50	S
7166.21	1501.	4.71	19.1	0.77	0.4767	0.597	0.318	0.256	50	S
7166.22	1500.	4.56	16.2	0.77	0.4915	0.400	0.386	0.252	50	S
7166.23	1500.	4.73	25.4	0 .7 3	0.4647	0.624	0.292	0.313	50	S
7166.24	1500.	4.59	22.6	0.73	0.4766	0.471	0.314	0.333	50	S
7166.25	1499.	4.50	20.9	0.73	0.4836	0.380	0.343	0.330	50	S
7166.25	2002.	6.51	21.0	0.88	0.5158	2.098	0.428	0.311	50	S
7166.27	2000.	6.33	17.2	0.88	0.5324	1.613	0.516	0.269	50	S
7166.28	1998.	6.08	14.3	0.88	0.5511	1.295	0.580	0.200	50	S
7166.29	1502.	4.90	21.6	0.91	0.4506	1.399	1.292	0.347	50	s
6/16/77 7167 .1	1503.	4.95	21.4	0.91	0.4843	1.905	0.205	0.287	50	S
7167.2	2004.	6.59	24.3	0.84	0.5043	2.273	0.419	0.287	50	s
7167.3	2004.	6.54	20.9	0.84	0.5099	1.802	0.500	0,293	50	s
7167.4	2002.	6.28	16.4	0.85	0.5354	1.276	0.640	0.267	50	S
7167.5	2003.	6.66	25.0	0.80	0.4968	1.758	0.459	0.214	50	s
7167.6	2004.	6.57	22.3	0.80	0.5043	1.405	0.532	0.285	50	s
7167.7	2002.	6.29	18.5	0.80	0.5265	0.944	0.652	0.261	50	s
7167.8	2004.	6.67	27.1	0.75	0.4858	1.304	0.468	0.217	50	S
7167.9	2003.	6.52	24.3	0.75	0.4982	0.900	0 . 537	0.288	- 50	s
7167.10	2000.	6.20	20.6	0.75	0.5219	0.558	0.655	0.271	50	s
7167.11	2004.	6.56	29.3	0.72	0.4889	0.826	0.475	0.241	50	S
7167.12	2002.	6.31	25.2	0.71	0.5082	0.440	0.569	0.355	50	s
7167.13	1999.	6.04	22.4	0.71	0.5267	0.289	0.648	0.291	50	S
7167.14	1501.	4.85	21.3	0.91	0.4756	1.646	0.219	0.253	50	s
6/21/77 7172.1	1499.	4.88	21.3	0.91	0.5028	1.996	0.208	0.307	50	s
7172.2	2502.	8.23	26.4	0.89	0.5484	3.587	0.471	0.155	50	s
7172.3	2501.	8.05	23.4	0.88	0.5545	2.805	0.505	0.117	50	s

		- 1			-					
DATE DAY				4		NO _x	co	HC		CONFIG-
TEST NO.	RPM	ВНР	SA	φ _{SYS}	BSFC	gm/min	gm/min	gm/min	BMEP	URATION
6/21/77										_
7172.4	2500.	7.89	20.3	0.88	0.5651	2.279	0.470	0.091	50	S
7172.5	2503.	8.29	28.0	0.84	0.5312	3.234	0.468	0.135	50	\$
7172.6	2502.	8.13	24.6	0.84	0.5407	2.466	0.454	0.098	50	S
7172.7	2500.	7.84	20.9	0.84	0.5611	1.716	0.552	0.092	50	S
7172.8	2503.	8.19	30.2	0.80	0.5265	2.671	0.439	0.117	50	s
7172.9	2503.	8.13	27.1	0.80	0.5327	2.092	0.486	0.110	<i>5</i> 0 `	·s
7172.10	2500.	7.83	23.4	0.80	0.5524	1.372	0.490	0.083	50	S ⁻
7172.11	2504.	8.32	34.1	0.76	0.5183	2.319	0.436	0.120	50	s
7172.12	2503.	8.17	29.4	0.76	0.5282	1.446	0.487	0.116	50	S
7172.13	2500.	7.90	25.9	0.76	0.5455	0.973	0.523	0.095	50	s
7172.14	2502.	8.35	34.8	0.70	0.5067	0.898	0.558	0.202	50	s
7172.15	2500.	8.20	32.1	0.70	0.5155	0.637	0.578	0.183	50	s
7172.16	2494.	7.69	28.1	0.70	0.5494	0.345	0.622	0.155	50	s
7172.17	2497.	7.78	38.4	0.66	0.5551	0.340	0.719	1.144	50	s
7172.18	2495.	7.30	37.4	0.66	0.5905	0.267	0 .7 85	1.221	50	S .
7172.19	2493.	7.60	35.0	0.66	0.5692	0.310	0.800	1.077	75	s
7172.20	1502.	7.19	17.1	0.89	0.4335	2.802	0.252	0.349	75	s
7172.21	1502.	7.06	14.0	0.89	0.4422	2.350	0.286	0.368	75	s
7172.22	1501.	6.71	8.9	0.89	0.4633	1.731	0.400	0.319	<i>7</i> 5	S
7172.23	1502.	7.10	17.5	0.85	0.4338	2.583	0.288	0.333	75	S
7172.24	1502.	6.94	13.7	0.84	0.4430	2.051	0.341	0.327	75	s
7172.25	1501.	6.65	10.3	0.84	0.4616	1.556	0.452	0.271	75	s
6/23/77										·
7174.1	1500.	4.87	21.8	0.91	0.4798	1 <i>.7</i> 91	0.205	0.243	75	S
7174.2	1500.	7.26	20.7	0.79	0.4388	2.423	0.278	0.289	<i>7</i> 5	S
7174.3	1500.	7.08	16.1	0.79	0.4500	1.612	0.332	0.274	75	S
7174.4	1499.	6.82	13.1	0.79	0.4667	1.157	0.428	0.252	<i>7</i> 5	S
7174.5	1500.	7.20	23.5	0.75	0.4343	1.839	0.288	0.287	75	S
7174.6	1500.	7.03	18.6	0.75	0.4449	1.091	0.338	0.280	75	S

ORIGINAL PAGE IS OF POOR QUALITY

DATE DAY TEST NO.	RPM	ВНР	SA	φ _{SYS}	BSFC	NO _x	CO gm/min	HC gm/min	ВМЕР	CONFIG- URATION
6/23/77 7174.7	1498.	6 .7 8	15.4	0.75	0.4610	0,733	0,404	0.266	<i>7</i> 5	S
7174.8	1500.	7.28	27.6	0.71	0.4243	1.349	0.303	0.278	75 75	S
7174.9	1499.	7.02	22.4	0.70	0.4370	0.661	0.339	0.284	75	S
7174.10	1498.	6.70	23.9	0.70	0.4593	0.346	0.397	0.285	<i>7</i> 5	S
7174.11	1498.	7.05	34.9	0.66	0.4350	0.786	0.339	1.134	<i>7</i> 5	S
7174.12	1497.	6.28	30.2	0.66	0.4868	0.413	0.385	1.134	75	S
7174.13	1489.	5.97	25.2	0.66	0.5108	0.204	0.421	1.135	50	S
7174.14	1503.	4.90	21.5	0.92	0.4813	1.619	0.278	0.270	50	S

APPENDIX B

EC Dynamometer Data

Table B-1. Engine Tests - Stock

DATE	. ,				-	-	NOx	со	НС	
TEST NO.	RPM	ВНР	SA	φ _{SYS}	ФСВ	BSFC	gm/min	gm/min	gm/min	BMEP
10/27/77 7300.20	998.	2.62	45.0	1.152	1.109	1.9607	0.048	10.2	1.12	5.9
7300.21	997.	2.66	43.3	1.158	1.120	1.9329	0.047	9.8	1.07	6.0
7300.22	998.	2.51	41.5	1.174	1.119	2.0661	0.047	9.8	1.00	5.7
10/27/77 7300.17	999.	12.17	37.34	1.149	1.124	0.7263	0.911	16 <i>.7</i>	1.02	27.6
7300.18	999.	12.19	32.9	1.142	1.131	0.7217	0.693	16.8	1.01	27.6
7300.19	997.	12.40	28.6	1.138	1.123	0.7211	0.604	. 17 . 6	1.01	28.1
10/27/77 7300.14	1001.	23.32	38.0	0.895	1.006	0.5116	5.322	1.0	1.01	52.5
7300.15	1001.	23.17	32.1	0.890	0.988	0.5212	4.038	1.0	0.97	52.4
7300.16	1001.	23.63	27.5	0.895	1.016	0.5200	3,903	1.1	0.93	54.2
10/27/77 7300.2	1499.	34.96	45.9	0.839	0.957	0.5188	8.287	2.2	1.47	52.6
7300.3	1499.	36.11	40.5	0.859	0.967	0.5159	7.909	2.2	1.36	54.5
7300.4	1497.	35.46	35.0	0.857	0.973	0.5229	6.585	2.3	1.28	53.7
10/27/77 7300.8	1501.	4.71	47.1	1.155	1.125	1.7407	0,164	14.9	0.99	7.1
7300.9	1501.	4.84	46.2	1.141	1.120	1.6644	0.163	15.0	0.99	7.3
7300.10	1501.	4.75	45.3	1.150	1.119	1.6882	0.156	15.1	0.99	7.2
10/27/77 7300.5	1500.	18 . 75	46.8	0.981	1.074	0.6533	3 . 315	4.5	0.96	<i>77.</i> 9
7300.6	1499.	18.77	42.7	0.984	1.084	0.6523	2.862	4.9	0.92	76.9
7 300.7	1498.	18.11	38.3	0.984	1.070	0.6795	2.278	4.7	0.86	77.6
10/26/77 7299.20	1500.	51.88	31.4	1.122	1.084	0.5274	6 . 708	72.2	2.49	78.3
7299.21	1500.	51.59	24.0	1.124	1.078	0.5367	5.537	73.0	2.43	77.9
7299.22	1500.	51.31	19.5	1.118	1.081	0.5519	4.916	73.7	2.35	77.4
10/26/77 7299.8	2001.	25.34	48.4	0.868	0.935	0.6676	4.574	2.6	0.778	28.7
7299.9	2000.	24.50	45.5	0.870	0.936	0.6968	3.820	2.6	0.724	27.8
7299.10	1999.	24.42	42.4	0.867	0.930	0.6952	3.326	2.7	0.720	27.6
10/26/77 7299 . 2	1997.	46.66	45.9	0.890	0.956	0.5383	13.134	3.3	1.304	52.4
7299.3	1996.	46.78	36.4	0.895	0.959	0.5454	10.342	3.7	1.086	53.0
7299.4	2002.	47.77	30.3	0.921	0.977	0.5569	9.150	4.0	0.902	54.0
10/26/77 7299.5	2002.	68.91	33.2	1.119	1.087	°0.5295	9.198	95.5	3.22	77.9

B

Table B-1. Engine Tests - Stock (Continutation 1)

DATE DAY TEST NO.	RPM	₿НР	SA	φ _{SYS}	ФСВ	BSFC	NO _x	CO gm/min	HC gm/min	ВМЕР
10/26/77 7299.6	2002.	- 68.03	26.5	1.121	1.088	0.5416	7.722	97.6	3.20	76.9
7299.7	2002.	68.69	21.0	1.116	1.089	0.5552	7.376	93.4	3.16	<i>7</i> 7.6
10/26/77 7299 . 11	1993.	3.86	41.7	1.115	1.077	2.6376	0.247	15.7	0.900	4.4
7299.12	2003.	3.83	40.0	1.117	1.072	2.6444	0.234	15.6	0.86	4.3
7299.13	2000.	3.44	39.1	1.115	1.074	2.9494	0.226	15.5	0.86	3.9
10/26/77 7299.14 7299.15	2502. 2499.	32 . 02 31 . 03	48.6 45.5	0.885 0.887	0.945 0.946	0.6973 0.7186	5 . 974 5 . 732	3.7 3.6	0.814 0.772	29.0 28.2
7277.13	2499.	30.35	43.0	0.884	0.943	0.7168	5.732	3.5	0.772	27.7
10/26/77 7299.17	2500.	57.68	48.6	0.894	0.959	0.5429	16.922	4.1	0.742	51.4
7299.18	2501.	59.00	44.2	0.898	0.964	0.5460	15 . 707	4.1	0.834	53.5
7299.19	2499.	58.89	38.0	0.909	0.970	0.5546	13.369	4.0	0.835	53.3

Table B-2. Engine Tests - Modified Stock - #42 Jets

DATE	T	Γ	,	1	ļ 	J	J	 	<u> </u>	1
DATE DAY TEST NO.	R₽M	ВНР	SA	φ SYS	фСВ	BSFC	NO _x	CO gm/min	HC gm/min	BMEP
10/31/77 7304.20	499.	1.86	35.4	1.063	0,997	1.5533	0.03	0.5	0.73	8.5
7304.21	499.	1.91	33.2	1.077	1,018	1.5129	0.026	0.5	0.73	8.6
7304.22	502.	2.23	31.2	1.061	1,026	1.3452	0.025	0.6	0.71	10.0
10/31/77 7304,23	1004.	3.51	43.0	1.111	1.092	1.5087	0.086	5 . 0	0 .7 3	7.9
7304.24	1004.	3.49	41.3	1.110	1.089	1.5215	0.074	4.9	0.78	7.9
7304.25	1003.	3.44	39.8	1.101	1.095	1.5346	0.073	4.8	0.69	7.7
10/31/77 7304 . 11	1001.	12.38	34.5	1.104	1.072	0,6976	1.065	8.1	0.83	28.0
7304.12	999.	12.04	30.5	1.109	1.077	0.7157	0.839	8.3	0.80	27.3
7304.13	999.	12.52	26.2	1.099	1.073	0.7041	0.731	8.4	0.79	28.4
10/31/77 7304.14	1000.	23.37	44.2	0.856	0.932	0,5046	4.895	1.0	1.05	52.9
7304.15	1000.	23.38	38.0	0.850	0.939	0,5052	3.768	1.0	1.04	52.7
7304.16	1000.	23.24	31.8	0.858	0.956	0.5185	3.700	1.1	0.99	52.6
10/31/77 7304.5	1498.	34.47	47.0	0.807	0.888	0,5160	6.612	2.2	1.70	52.2
7304.6	1497.	35.17	43.4	0.811	0.886	0.5176	5.925	2.3	1.69	53,.5
7304.7	1503.	35.39	37.4	0.817	0.891	0.5291	4.670	2.6	1.49	53.3
10/31/77 7304 . 26	1502.	3.86	45.2	0.868	0.926	2,0515	0 . 198	1.8	2.47	6.1
7304.27	i <i>5</i> 01.	3.89	42.0	0.869	0.920	2.0487	0.233	1.9	2.47	6.0
7304.28	1499.	3.31	40.2	0.868	0.905	2,3787	0.204	1.8	2.47	5.0
10/31/77 7304 . 8	1498.	18.98	49.6	0.921	0.958	0,6359	3.453	1.5	0.86	28.7
7304.9	1498.	18.67	46.1	0.923	0.956	0.6496	3.094	1.5	0.82	28.2
7304.10	1496.	18:35	40.3	0.923	0.959	0.6609	2.403	1.7	0.75	27.7
10/31/77 7304.2	1499.	51.32	32.4	1.050	1.000	0.4964	9.980	30.8	2.16	77.5
7304.3	1499.	51.56	25.3	1.059	1.009	0.5087	8.045	35.7	2.13	77.9
7304.4	1497.	51.49	21.4	1.051	1.018	0.5156	7.458	33.7	1.99	77.8
10/28/77 7301.7	1998.	25.05	54.4	0.790	0.923	0,6790	2.810	3 . 5	3.32	28.4
7301.8	1996.	23.70	49.2	0.791	0.923	0.7193	2.133	3.7	3.27	26.9
7301.9	2002.	24.67	46.4	-0.782	0.909	0,7122	1.939	3.9	4.06	27.9
10/28/77 7301 _• 1	1997.	46.92	52.3	0.839	0.944	0.5151	11.517	3.4	1.550	53.2

Table B-2. Engine Tests - Modified Stock - #42 Jets (Continuation 1)

DATE DAY TEST NO.	RPM	внР	SA	φ _{SYS}	ФСВ	BSFC	NO _x	CO · gm/min	CH gm/min	BMEP
10/28/77 7301.2	1995.	45.97	46.2	0.843	0.934	0.5285	9.442	3.6	1.504	52 . 3
7301.3	1995.	47.76	40.2	0.864	0.944	0.5251	9.037	3.5	1.116	54.1
10/28/77 7301.4	1999.	69.41	36.4	1.062	1.076	0.4931	14.811	38.5	2.53	78 . 6
7301 . 5	1998.	68.95	27.1	1.066	1.081	0.5049	11.679	38.3	2.43	78.2
7301.6	1997.	68.90	22.7	1.065	1.090	0.5175	10.745	35.2	2.30	78 . 1
10/31/77 7304 . 29	2002.	4.33	47.6	0.886	0.953	2.3219	0.378	2.3	1 . 68	4.9
7304.30	1999.	3.53	45.3	0.890	0.943	2.8573	0.345	2.4	1.92	4.0
7304.31	2004.	5.14	42.7	0.884	0.954	2.0675	0.430	2.2	1.34	5.8
10/28/77 7301.10	2004.	4.84	41.2	1.050	1.042	2.0346	0.387	6.1	0.64	5 . 5
7301.11	2002.	5.12	30.4	1.060	1.057	1.9479	0.378	6.5	0.58	5.8
<i>7</i> 301 . 12	1998.	4.19	42.9	1.039	1.046	2.3162	0.317	5.3	0.48	4.7
10/28/77 7301.16	2501.	31 . 91	51.4	0.821	0.959	0.7042	4.591	4.7	2 . 78	28.7
7301.17	²⁴⁹⁷ .	29.92	48.3	0.811	0.966	0.7407	3.693	4.6	2.84	27.0
7301.18	2496.	30.71	45.0	0.816	0.964	0.7411	3.579	4.8	2.82	27.8
10/28/77 7301.13	2495.	57.39	52.2	0.836	0.981	0.5329	12.714	4.4	0.944	51.9
7301.14	2494.	59.23	45.7	0.861	0.992	0.5367	12.439	4.2	0.812	53.8
<i>7</i> 301 . 15	2943.	58.48	40.8	0.863	0.999	0.5469	9.721	4.2	0.656	53.0

Table B-3. Engine Tests - Modified Stock - #44 Jets

		ı —-								7
DATE DAY TEST NO.	RPM	ВНР	SA	φ _{SYS}	ф _{СВ}	BSFC	NO _x gm/min	CO gm/min	HC gm/min	вмер
11/2/77 7306.17	504.	1.97	35.8	1.193	1.115	1.4665	0.012	6.4	0.65	8.8
7306.18	504.	1.93	33.0	1.207	1.109	1.5075	0.012	6.4	0.66	8.8
7306.19	504.	1.92	31.0	1.226	1.123	1.5429	0.012	6.5	0.65	8.7
11/2/77					-					
7306.14	· 998 .	3.12	40.4	1.143	1:112	1.6724	0.059	8.0	0.87	7.1
7306.15	999.	3.30	38.4	1.134	1.118	1.5866	0.059	8.0	0.80	7.5
7306.16	997.	3.17	36.3	1.142	1.115	1.6505	0.053	7.9	0.79	7.2
11/2/77 7306.11	999.	12,60	42.0	0.897	0.975	0.6500	1.404	0.8	0.70	28.5
7306.12	998.	12.49	39.8	0.896	0.978	0.6569	1.192	0.9	0.69	28.3
7306.13	997.	11.85	35.3	0.896	0.977	0.6922	0.934	0.9	0.67	26.6
11/2/77 7306.5	1000.	22,91	43.4	0.858	0.972	0.5194	4.717	1.0	1.08	51.9
7306.6	1001.	23.61	37.7	0.859	0.972	0.5201	4.350	1.0	1.09	53.4
7306.7	999.	23.19	32.2	0.854	0.966	0.5260	3.180	1.1	1.03	52.5
11/1/77 7305.19	1501.	36.22	47.9	0.856	0.960	0.5040	9.543	1.8	1.28	54.6
7305.20	1500.	35.38	39.5	0.857	0.961	0.5157	7.093	2.0	1.16	53.4
7305.21	1499.	34.98	34.3	0.859	0.959	0.5275	5,688	2.3	1.06	52.8
11/3/77										
7307.2	1496.	3.53	42.3	1.178	1.095	2.1720	0.104	17.7	1,20	5.3
7307.3	1498.	3.60	44.2	-1.183	1.094	2.1371	0.104	17.5	1.17	5.4
7307.4	1496.	3.53	42.3	1.177	1.091	2,1666	0.100	17.7	1.14	5.3
11/1/77 7305.16	1499.	18.91	46.7	0.901	0.970	0.6588	2.841	1.6	0.686	28.5
7305.10	1498.	18.85	43.8	0.898	0.971	0.6665	2.532	1.7	0.672	29.1
7305.18	1497.	18.71	40.4	0.889	0.969	0.6639	2.216	1.8	0.640	28.3
11/2/77							8.349	48.3	2.31	77.4
7306.2	1499.	51.27	32.7	1.088	1.132	0.5079	1 1			77.8
7306.3 7306.4	1498. 1502.	51.51 51.34	25.3 20.2	1.103	1.125 1.128	0.5176 0.5327	6.637 5.583	57 . 2 61 . 6	2.30 2.19	77.8 77.4
1	1502.	21.34	20.2	1.108	1.120	0.3327	5,565	01.0	2.17	//•4
11/1/77 7305.7	2000.	24.68	49.0	0.857	0.948	0.6773	4.137	2.5	0.740	27.9
7305.8	1997.	24.56	46.3	0.858	0.949	0.6774	3.682	2.6	0.714	27.8
7305.9	2001.	24.95	42.7	0.847	0.945	0.6742	3.487	2.7	0.798	28.2
1 1 /1/77 7305.1	1997.	46.71	49.4	0.865	0.955	0.5227	13.129	2.9	1.164	53.1

Table B-3. Engine Tests - Modified Stock - #44 Jets (Continuation 1).

DATE DAY TEST NO.	RPM	внр	SA	φ _{SYS}	ФСВ	BSFC	NO _x	ĆO gm/min	HC gm/min	ВМЕР
11/1/77 7305 . 2	1997.	47.67	42.6	0.880	0.969	0.5264	12.191	3.0	1.086	54.0
7305.3	1995.	47.72	37.1	0.879	0.961	0.5275	8.637	3.3	0.930	53.6
11/1/77 7305.4	1998.	68 .7 8	33.4	1.118	1.092	0.5224	11.448	69.4	2.73	77.9
<i>7</i> 305 . 5	1999.	68.72	25.3	1.112	1.091	0.5282	9.125	79.2	2.74	<i>7</i> 7 . 8
7305.6	1998.	68.36	21.0	1.117	1.099	0.5413	8.171	79.3	2.66	<i>7</i> 7.4
11/3/77 7307.5	1998.	4.70	45.6	1.120	1.082	2.1333	0.274	15.2	0.96	5.3
7307.6	1996.	4.47	43.6	1.119	1.074	2.2279	0.260	15.1	0.92	5.1
7307.7	1994.	4.31	40.5	1.124	1.081	2.3194	0.241	15.0	0.88	4.9
11/1/77 7305.10	2500.	31.45	54.2	0.871	0.958	0.6886	6.944	3.5	0.750	28.4
7305.11	2497.	30.57	48.2	0.869	0.959	0 . 7055	5.514	3.5	0.724	27.8
7305.12	2504.	31.62	44.3	0.870	0.957	0.7040	5.149	3.5	0.680	28.5
11/1/77 7305.13	2497.	58.19	55. 5	0.882	0.970	0.5392	19.599	3.8	1.004	52.7
7305.14 7305.15	2495. 2499.	58.21 60.03	46.4 39.5	0.873 0.894	0.967 0.979	0.5348 0.5408	14.552 13.563	4.0 3.9	0.824 0.700	52.8 54.4

Table B-4. Engine Tests FIDC System

	1		· · ·							
DATE DAY TEST NO.	RPM	внр	SA	φ _{SYS}	ϕ_{CB}	BSFC	NO _x	CO gm/min	HC gm/min	BMEP
10/20/77					 					
10/20/77 7293.8	504.	1.71	25.0	1.181	0.850	2.5476	0.035	4.2	0.99	7.5
7293.9	503.	1.67	24.7	1.174	0.856	2.4952	0.036	3.2	0.99	7.8
7293.10	500.	1.30	22.2	1.161	0.830	3.3565	0.027	. 3.0	0.99	5.6
10/20/77 7293.5	1004.	3.78	32.3	1.140	1.021	1 .7 415	0.104	11.0	1.56	8.5
7293.6	1008.	3.88	30.3	1.139	1.042	1.6880	0.091	11.6	1.56	8.7
7293.7	1004.	3.94	28.4	1.142	1.046	1.6635	0.080	11.7	1.55	8.9
10/20/77										
7293.11	997.	12.25	31.1	1.114	0.974	0.8055	1.231	11.0	2.40	27.8
7293.12	996.	12.17	26.4	1.108	0.972	0.8105	0.983	10.8	2.40	27.7
7293.13	996.	12.25	23.2	1.099	0.978	0.8136	0.931	10.5	2.45	27.9
10/20/77 7293.14	998.	23.34	28.9	0.936	1.021	0.5113	5.709	1.4	1.89	52.9
7293.15	998.	23.23	23.2	0.936	1.027	0.5134	4.324	1.4	1.85	52.7
7293.16	996.	22.53	19.3	0.948	1.025	0.5374	3.265	1.6	1.83	51.2
10/25/77				*** **						0
7298.11	1504.	35.44	46.4	0.829	0.942	0.5093	3.632	2.0	0.049	53.3
7298.12	1503.	34.88	37.3	0.838	0.940	0.5218	2.174	2.2	0.046	52.5
7298.13	1503.	35.32	32.0	0.843	0.923	0.5287	2.125	2.5	0.046	53.3
10/20/77										
7293.2	1494.	2.15	34.3	0.925	0.855	4.1564	0.100	2.7	0.261	3.8
7293.3	1493.	2.13	33.1	0.876	0.814	4.1448	0.117	3.0	0.275	3.3
7293.4	1495.	2.83	35.7	0.948	0.922	3.1321	0.091	2.8	0.252	3.9
10/25/77	7.500		4=- =							
7298.14	1503.	18.59	47.5	0.927	0.934	0.7943	0.551	1.7	0.026	27,4
7298.15	1502.	18.26	40.4	0.865	0.945	0.7036	0.300	2.0	0.025	27.5
7298.16	1498.	18.67	34.9	0.896	0.952	0.6876	0.209	2.2	0.023	28.2
10/20/77 7293.17	1497.	51.13	42.5	0.830	0.940	0.4596	12.931	2.4	2.41	77.1
7293.18	1497.	51.13	34.8	0.831	0.940	0.4650	1 1		2.41	77.1
7293.19	1497.	50.51	29.5			·	9.895	2.7	1.89	77.4
10/25/77	147/•	30.51	47.3	0.830	0.950	0.4764	7.772	3.1	1.70	75. 4
7298.2	1997.	24.21	47.4	0.789	0.859	0.7110	1.605	3.2	0.033	27.4
7298.3	1997.	24.58	41.1	0.803	0.874	0.6739	1.012	3.2	0.032	27.8
7298.4	1995.	23.34	36.5	0.809	0.920	0.7106	0.951	3.4	0.032	26.5
10/20/77										}
., 7293.23	2003.	46.54	40.1	0.864	0.979	0.5188	12.313	3.2	1.59	52.5

B-5

Table B-4. Engine Tests FIDC System (Continuation 1)

DATE DAY TEST NO.	RPM	ВНР	SA	φ _{SYS}	^ф СВ	BSFC	NO _x	CO gm/min	HC gm/min	вмер
10/20/77 7293 . 24	2000.	46.01	37.7	0.863	0.976	0.5287	9.314	3. 6	1.38	52.3
7293.25	1999.	44.48	32.5	0.864	0.975	0.5471	6 . 719	3.9	0.992	50.3
10/20/77 7293.20	1998.	68.45	40.4	0.839	0.953	0.4633	16.300	4.4	1.568	77 . 5
7293.21	1996.	67.63	32.0	0.867	0.954	0.4918	12.363	4.9	1.226	76.7
7293,22	1995.	6 5.5 5	28.4	0.851	0.953	0.4940	9.687	5.1	1.008	74.4
10/19/77 7292.2	2001.	6.60	43.0	0.923	1.016	1.8674	0.533	`3 . 3	3.51	7 . 5
7292.3	1998.	5.14	41.7	0.859	0.882	2.3600	0.300	3.5	3.83	5.8
7292.4	2000.	4.65	39.4	0.811	0.874	2.4950	0.207	3 . 7	4.00	5.3
10/18/77 7291.6	2497.	31.67	50.1	0.806	0.901	0.7314	4.664	5.1	4.74	28.8
7291.7	2495.	29.99	46.5	0.809	0.909	0.7804	3.074	5 . 1	3.54	27.5
7291.8	2500.	32.45	43.3	0.807	0.894	0.7440	2.621	5 . 7	3.02	29.3
10/25/77 7298.8	2495.	57 . 77	45.2	0.838	0.936	0.5453	9.975	5.1	0.372	52.4
7298.9	2495.	58.65	41.3	0.845	0.938	0.5530	9.847	5.2	0.630	53.2
7298.10	2494.	57.28	37.3	0.853	0.937	0.5758	8.134	5.2	0.481	52.0

Table B-5. Distribution Tests

			· ·			· <u> 1</u>					
DATE DAY TYPE	TEST NO.	RPM	внР .	SA ·	BSFC	CYLINDER NO(i)	φ SYS	[∲] CB;	NO _x gm/min	CO gm/min	HC gm/min
11/8/77 7312	ļ	1998	52.6	52°	0.5085	COMMON 0	0.84	0.909	9.651	3.1	0.464
STOCK W/#42 JETS	101	1997	52.4	52°	0.5101	1	0.84	0,929	13,054	2.7	0.326
STOCK W/#42 JETS	201	1996	52.6	52 ⁰	0.5085	2	0.84	0.889	10.543	2.9	0.324
STOCK W/#42 JETS	301	1995	52.7	52 ⁰	0.5076	3	0.84	0.882	7.103	3.0	0.286
STOCK W/#42 JETS	401	1999	52.1	52°	0.5114	4	0.84	0.876	14.977	2.0	0.726
STOCK W/#42 JETS	501	1998	52.4	52 ⁰	0.5089	5	0.84	0.821	3.376	3.0	0.848
STOCK W∕¥42 JETS	601	1996	52.5	52°	0.5094	-6	0.84	0.870	11.171	2.2	0.512
STOCK W/#42 JETS	701	1995	52.5	52°	0.5094	7	0.84	0.869	11.177	2.8	0.402
STOCK W/#42 JETS	801	.1994	52.4	52°	0.5095	8 .	0.84	0.815	1.539	3.7	0.368
STOCK W/#42 JETS	901	1999	52.1	52°	0.5122	COWWON	0.84	0.858	9.784	3.1	0.500
STOCK W/#42 JETS	2	1501	53.4	47°	0.5080	COWWON	0.800	0.837	4.64	2.4	0.384
STOCK W/#42 JETS	102	1499	52.9	47°	0.5114	1 .	0.800	0.870	5 . 888	2.5	0.372
STOCK W/#42 JETS	202	1499	53.1	47 ⁰	0.5092	2	0.800	0.862	5.976	1.8	0.302
STOCK W/#42 JETS	302	1498	52.4	47 ⁰	0.5165	3	0.800	0.855	3.868	2.1	0.318
STOCK W/#42 JETS	402	1498	52.6	47° .	0.5157	4	0.800	0.851	5.311	1.7	0.332
STOCK W/#42 JETS	502	1498	53.1	47 ⁰	0.5099	5	0.800	0.825	1.402	3.0	1.43
STOCK W/#42 JETS	602	1496	52.6	47°	0.5141	6	0.800	0.860	4.941	1.6	0.474
STOCK W/#42 JETS	702	1497	52.9	47°	0.5116	7	0.800	0.875	4.231	1.9	0.420
STOCK W/#42 JETS	802	1496	53.0	47°	0.5114	8	0.800	0.825	0.478	3.1	0.966
STOCK W/#42 JETS	902	1495	52.6	47 ⁰	0.5156	COWWON	0.800	0.876	4.615	2.4	0.688
11/9/77 7313	2	1001	12.43	34 ⁰	0.7153	COWWON	1.12	1.087	0.903	17.1	0.366
STOCK W/#42 JETS	102	999	12.49	34 ⁰	0.7219	1	1.12	1.076	1.351	4.6	0.208
STOCK W/#42 JETS	202	1000	12.61	34 ⁰	0.7127	2	1.12	1.149	0.246	44.6	0.266
STOCK W/#42 JETS	302	1000	12.51	34°	0.7148	3	1.12	1.147	0.326	39.3	0.314
STOCK W/#42 JETS	402	999	12.56	34°	0.7057	4	1.12	1.081	0.791	8.4	0.298
STOCK W/#42 JETS	502	999	12.52	34°	0.7048	5	1.12	1.108	0.492	21.5	0.328
STOCK W/#42 JETS	602	998	12.46	34°	0.7145	6	1.12	1.08	1.101	5.2	0.216
STOCK W/#42 JETS	702	998	12.51	34°	0.7135	7	1.12	1.075	1.493	1.5	0.182

Table B-5. Distribution Tests (Continuation 1)

DATE DAY TYPE	TEST NO.	RPM	внр	SA	BSFC	CYLINDER NO(i)	φ _{SYS}	^ф СВ _ї	NO _x	CO gm/min	HC gm/min
CONTINUE 7313	802	997	12.72	34°	0.7050	8	1.12	1.105	0.917	15.8	0.250
STOCK W/#42 JETS	902	997	12.74	34 ⁰	0.7109	COWWON	1.12	1.096	0.883	16.7	0.386
STOCK W/#42 JETS	· з	499	1.94	35 ⁰	1.4822	COMMON 0	1.06	1.013	0.022	0.5	0.39
STOCK W/#42 JETS	103	500	2.02	35 ⁰	1.4410	1	1.06	1.042	0.035	0.4	0.20
STOCK W/#42 JETS	203	499	2.09	35 ⁰	1.3796	2	1.06	1.080	0.030	0.5	0.17
STOCK W/#42 JETS	303	498	1.98	35 ⁰	1.4520	3	1.06	1.057	0.022	0.5	0.27
STOCK W/#42 JETS	403	502	2.14	35°	1.3520	4	1.06	0.979	0.013	0.5	0.56
STOCK W/#42 JETS	503	500	2.07	35 ⁰	1.3894	5	1.06	1.024	0.019	0.5	0.36
STOCK W/#42 JETS	603	500	2.12	35 ⁰	1.3727	6	1.06	1.017	0.016	0.6	0.41
STOCK W/#42 JETS	703	500	2.14	35°	1.3515	· 7	1.06	1.052	0.025	0.4	0.21
STOCK W/#42 JETS	803	500	2.07	35°	1.3940	8	1.06	1.071	0.025	0.4	0.17
STOCK W/#42 JETS	903	501	2.11	35 ⁰	1.3707	COMMON 0	1.06	1.030	0.021	0.5	0.51
11/10/77 7314	1	1500	34.35	46 ⁰	0.5164	COMMON	0.85	0.917	9.003	2.1	2.03
FVI W/#45 JETS	101	1499	35.25	46°	0.5052	1	0.85	0.907	3.755	2.2	0.95
STOCK W/#45 JETS	201	1498	35.12	46°	0.5077	2	0.85	0.879	2.925	2.1	1.04
STOCK W/#45 JETS	301	1498	34.70	46°	0.5136	3	0.85	0.859	1.712	2.4	4.27
STOCK W/#45 JETS	401	1496	34.72	46°	0.5128	4	0.85	0.938	10.051	1.8	2.34
STOCK W/#45 JETS	501	1495	34.49	46 ⁰	0.5162	5	0.85	0.956	12.080	2.0	3.38
STOCK W/#45 JETS	601	1494	34.96	46°	0.5072	6	0.85	0.965	14.084	1.6	1.65
STOCK W/#45 JETS	701	1492	34.80	46°	0.5106	7	0.85	0.933	12,145	2.2	1.44
STOCK W/#45 JETS	801	1491	35.22	46°	0.5045	8	0.85	0.975	13,227	1.7	1.30
STOCK W/#45 JETS	901	1490	35.32	46°	0.5046	COMMON	0.85	0.926	10.025	2.1	2.20
STOCK W/#45 JETS	2	1999	46.93	44.5°	0.5019	COWWON	0.90	0.953	13.713	3.1	1.47
STOCK W/#45 JETS	102	1996	46.36	44.5°	0.5118	1	0.90	0.950	10.381	2.7	0.90
STOCK W/#45 JETS	202	1994	46.17	44.5°	0.5085	2	0.90	0.938	8.795	2.6	0.910
11/11/77 7315	302	1996	46.56	44.5°	0.5066	3 -	0.90	0.918	2,896	3.0	1.23
FVI W/#45 JETS	401	1996	45.83	44.5°	0.5103	4	0.90	0.978	15.104	2,2	2.39
STOCK W/#45 JETS	501	1995	46.27	44.5°	0.5055	5	0.90	0.985	13.041	2.6	2.87

Table B-5. Distribution Tests (Continuation 2)

DATE DAY TYPE	TEST NO.	RPM	внр	SA	BSFC	CYLINDER NO(i)	φ _{SYS}	ф _{СВ;}	NO _x	CO gm/min	HC gm/min
CONTINUE 7315	~601	1993	46.04	44.5°	0.5074	6	0.90	1.002	17.477	2.1	1.79
STOCK W/#45 JETS	701	1991	45.78	44.5°	0.5095	7	0.90	0.986	14.608	2.9	1.37
STOCK W/#45 JETS \	801	1998	45.86	44.5°	0.5117		0.90	1.005	14.287	2.6	1.102
STOCK W/#45 JETS	901	1996	46.15	44.5°	0.5041	COMMON	0.90	0.975	13.369	3.1	1.67
11/14/77 7318	2	999	12.50	31°	0.7019	COMMON 0	1.0	1.052	0.927	3.9	2.15
FVI W/#45 JETS	102	998	12.19	31°	0.7045	1 ,	1.0	1.018	0.997	1.8	1.64
STOCK W/#45 JETS	202	997	11.92	31 ⁰	0.7303	2	1.0	1.049	1.303	1.6	1.00
STOCK W/#45 JETS	302	993	10.87	31°	0.8074	3	1.0	1.085	0.918	7.1	2.14
STOCK W/#45 JETS	402	1000	12.02	31°	0.7670	4	1.0	1.031	0.886	1.9	1.54
STOCK W/#45 JETS	502	1001	12.50	31°	0.7418	5 .	1.0	1.073	1.116	6.6	2.15
STOCK W/#45 JETS	602	1000	12.15	31°	0.7544	6	1.0	1.034	1.072	2.0	1.25
STOCK W/#45 JETS	702	998	12.09	31°	0 . 7818	7	1.0	1.036	2.390	1.6	1.34
STOCK W/#45 JETS	802	999	12.18	31°	0.7788	8	1.0	1.077	1.585	3.6	1.41
STOCK W/#45 JETS	902	998	12.26	31°	0.7715	COMMON 0	1.0	0.968	1.489	2.8	2.36

APPENDIX C
.
CHASSIS DYNAMOMETER DATA

Table C-1. Vehicle Tests

DATE DAY	TEST NO.	MPGWT	MPGCB		NO _x	. co	нс	VEHICLE GONFIGURATION
-1/12/78 ⁻ 8012	. 1		12.540	BAG 1 (g)	7.705	129.926	0.747	STOCK - #45 JETS
				BAG 2 (g)	3.446	57.377	1.507	
				BAG 3 (g)	6.159	47.010	1.860	
				AVG WT gm/mi	1.372	18.702	0.386	
1/13/78 8013	2	11.354	12.270	BAG 1 (g)	8.022	183.315	12.118	STOCK - #45 JETS
				BAG 2 (g)	3.044	271.112	8.478	
				BAG 3 (g)	5.801	95.329	4.298	
			•	AVG WT gm/mi	1.307	53,903	2.152	
1/31/78 8031	13	12.489	13.466	BAG 1 (g)	10.306	163,223	9.127	STOCK - #45 JETS
				BAG 2 (g)	4.254	30,960	1.009	
				BAG 3 (g)	7.964	22.897	1.429	
		*		AVG WT gm/mi	1.744	15.023	0.756	
2/1/78 8032	14	12.557	13,456	BAG 1 (g)	10.005	159.384	8.812	STOCK - #45 JETS
			•	BAG 2 (g)	4.400	20.883	0.827	
				BAG 3 (g)	8.166	27.525	1.503	
				AVG WT	1.777	13.973	0.728	
2/2/78 8033	15	11.596	12.475	BAG I (g)	8.067	160.037	8.737	STOCK - #45 JETS
		:		BAG 2 (g)	3.668	41.510	1.007	
				BAG 3 (g)	6.315	32.184	1.235	
				AVG WT	1.430	17.120	0.727	
2/3/78 8034	16	11.384	12.160	BAG 1 (g)	8.335	125.576	6.641	STOCK ~ #45 JETS
				BAG 2 (g)	4.250	25.656	0.734	
				BAG 3 (g)	6.672	28.609	1.002	
				AVG WT	1.550	12.764	0.553	
2/7/78 8038	17	11.153	11.902	BAG 1 (g)	8.293	200.104	13.145	STOCK - #45 JETS
				BAG 2 (g)	4,162	28.719	0.723	
				BAG 3 (g)	6.478	46.820	1.186	
				AVG WT	1.529	18.985	0.948	

Table C-1. Vehicle Tests (Continuation 1)

DATE DAY	TEST NO.	MPGWT	MPGCB		NO _x	со	НС	VEHICLE CONFIGURATION
1/23/78 8023	8	12.748	13.691	BAG 1 (g)	10.392	82,403	7.614	MOD - STOCK - #42 JETS
•				BAG 2 (g)	5.592	20.922	1.227	
				BAG 3	8.442	10.930	1.279	
				AVG WT gm/mi	1.980	8.336	0.697	
1/24/78 8024	9	12 . 788	13.890	BAG I (g)	10.632	90.014	6.600	MOD STOCK - #42 JETS
				BAG 2 (g)	5.488	12.926	1.031	
	:	i		BAG 3 (g)	7.304	10.642	1.458	
1 /05 /70			•	AVG WT	1.896	7.689	0.626	
1/25/78 8025	10	12.733	13,904	BAG 1 (g)	10.276	91.104	7.416	MOD STOCK - #42 JETS
		•	:	BAG 2 (g)	5.376	13.439	1.069	
				BAG 3 (g)	7 . 311	8.724	1.146	
1/0//70				AVG WT	1.867	7.688	0.656	
1/26/78 8026	11	13.023	14.036	BAG 1 (g) BAG 2	9.929	66.559	7.254	MOD STOCK ~ #42 JETS
1				(g) BAG 3	5.425	13.324	1.004	
				(g) AVG WT	7.656	10.155	1.170	
1/27/78				gm/mi BAG 1	1.874	6.359	0.638	HOD
8027	12	12.878	13.935	(g) BAG 2	9.956	74.396	6.971	MOD STOCK - #42 JETS
				(g),	5.512	12.866	1.070	
			ļ	BAG 3 (g)	7.849	8.591	1.523	
				AVG WT	1.897	6.615	0.656	

Table C-1. Vehicle Tests (Continuation 2)

DATE DAY	TEST NO.	MPG _{WT}	MPG _{CB}		NO _x	со	НС	VEHICLE CONFIGURATION
1/16/78 8016	3	11.926	12.795	BAG 1 (g)	10.853	94.300	44.570	FVI
				BAG 2 (9)	0.009	14.274	1.392	
				BAG 3 (g)	0.005	13.426	2.516	
				AVG WT gm/mi	0.621	8.295	2.919	
1/17/78 8017	4	11.936	13.823	BAG 1 (g)	10.341	59.720	27.103	FVI
				BAG 2 (g)	4.512	10.335	1.387	
			:	BAG 3 (g)	7.577	20.870	3.717	
			:	AVG WT	1.784	6.438	2.037	•
1/18/78 8018	5	1 1. 743	12.644	BAG 1 (g)	10.265	44.265	21.146	FVI
				BAG 2 (g)	5 . 360	8.652	1 . 175	
				BAG 3 (g)	7.683	10.683	2.651	ļ
				AVG WT	1.898	4.530	1.580	
1/19/78	6	11.953	12.535	BAG 1 (9)	11.946	61.766	23.411	FVI
	Ĭ	118750	121505	BAG 2 (g)	5.192	16.913	1.209	1. 4.1
				BAG 3 (g)	7.842	18.822	1.294	
				AVG WT	1.948	7.138	1.583	
1/20/78 8020	7	11.967	12.544	BAG 1				
0020	′	11.70/	12.044	(g) BAG 2	11.387	85.838	40.225	FVI
				(g) BAG 3	5.516	18.577	1.183	
				(g) AVG WT	8.006	23.050	3.119	
	<u> </u>			gm/mi	1.981	9.079	2,680	

TEST TYPE: 75' FTP-CH TEST# 3
VEHICLE ID: 1L39k3C201052 DATE: 1-16-7
INSTP OPER: P.B. PROGRAM: F.V.I. VEHICLE: CHEVY DRIVER: J.A. CYL:8 CID: 350 TRANS: AUTO DDOM: 5467.3 MI SITE: 4 DIM: 4500 ACTHP: 14 IHP: 11.52

DAY 8016 TAPE P753 BENCH NO. 2 MRH= 51.30 PAMB= 14.060 TAMB= 71.10

WDRD A = 000222 000222 000222 000422 004032 OCTAL CODES: MDPD B = 010444 010444 010444 010441 010441 010444

BAG DATA INPUT OPDER: 1A.2A.3A.2E.3E.1E.

			MILES	GAS-GM	GAL	MPG
CV2 DELTAP= 1.935	AH =	60.6639	3.629	933.	.3335	10.883
CVS PIH = 12.596	PSAT =	.3771	3.905	928.	.3317	11.774
CV3 TIM = 99.400	AHFAC =	.9369	3.620	773.	.2763	13.103
VO = .2929		TOTALS	11.154	2634.	.9414	11.848
					WID FIP	11.926

AMBIENT SAMPLE

BAG %FULL 30	L SCALE		%FULL 2CL	. GCALE	VALUE
CD2-% 1 1.150 CD2-% 2 1.200 CD2-% 3 1.130	4 % 4 % 4 %	.0397 .0413 .0390	48.420 32.130 42.400	4 % 4 % 4 %	1.7945 1.1489 1.5518
NK-PPM 2 .020	100PPMHDK 100PPMHDK 100PPMHDK	.0300 .0300	5.640	100PPMNOX 1PPMNOX 1PPMNOX	.0564
CO-PPM 1 .090 CO-PPM 2 .000	500PPM LO 500PPM LO 500PPM LO	1.0321 .7817 .7817	27.120	2KPPM LO 500PPM LO 500PPM LO	92.4147
HC-PPM 1 12.060 HC-PPM 2 12.460 HC-PPM 3 11.950	50PPM LO 50PPM LO	6.0300 6.2300 5.9750	47.480	117PPM LO 50PPM LO 100PPM LO	23.7400
	*	•			•
PHASE COS	M EMISSION NOY	SZPHASE CO	HC		(L FAC YMI): (DF) (CU FT)
1 2518.471 1 693.985	10.853 2.991	94.300 25.985			7078 2758.68 7 3.629 MI)
2 2720.098 2 696.568		14.274 3.655			5466 4721.25 ? 3.905 MI)
3 2188.650 3 604.600		13.42 6 3.709			5211 2781.90 ? 3.620 MI)
TOTAL 7427.220 TOTAL 665.879 TOTAL 670.815		122.000 10.938 8.295	48.478 4.346 2.919		7 11.154 MI) 7 FOP 7.529 MI)
COMPOSITE FUEL 1972 COLD FTP: 7.5 1972 HOT FTP: (7.5 1975 FTP: (11.1	i34 MI) = i25 MI) = 54 MI) =	12.027 13.442 12.726	1 1 2 1 3 1	MPG 1.461 2.607 4.475	

FVI CONFIGURATION - EBI ON NO PURGE FOR FIRST MIN. EB2 HOW ON AIR PURGE FOR FIRST 5 BAG READS. CA=11. #45 JETS

1975 WTD FTP (7.529 MI) = 12.795

EKHAUST SAMPLE .

AV6

12.848

TEST TYPE: 75' FTP-CH PROGRAM: F.V.I. TEST# 5 1L39K3C201052 VEHICLE: CHEVY VEHICLE ID: DATE: 1-18-78

DPIVER : INSTR OPER: R.B. J.A.

AMBIENT SAMPLE

CYL:8 CID: 350 TRANS: AUTO ODOM: 5489.5 MI SITE: 4 4500 ACTHP: 14.0 IHP : DIM: 11.5

BENCH NO. 2 %PH# 44.90 PAMB≅ 14.142 TAPE P755 TAMB= 73.500 DAY 8018

MDRD A = 000222 000222 000222 000222 000422 002022DOTAL CODES: MOPD B = 010444 010444 010444 010444 010444 010444 BAG DATA IMPUT ORDEP: 2A,3A,1A,2E,3E,1E,

MILES GAS-GM GAL MPG CVS DELTAP= 1.941 AH = 57.15053.590 971. .3470 10.345 CVS PIN = 12.670 PSAT = 919. .4086 3.860 11.752 .3284 CVS TIN = 101.000 AHFAC = .9226 3.606 782. .2795 12.902 V0 = .2928 TOTALS 11.056 2672. .9550 11.577 WID FIR 11.743

EXHAUCT SAMPLE

	BA6	NEULL E	SL GCALE	VALUE	%FULL SCI	CALE	VALUE
002-% 002-% 003-%	1 2 3	1.380 1.360 1.360	4 %	.0472 .0466 .0466	50.510 32.500 42.800	4 % 4 % 4 %	1.8797 1.1631 1.5678
NK-664 NK-664 NK-664	2	.130	100PPMNOX 100PPMNOX 100PPMNOX	.1300 .1300 .0900	22.800	100PPMNO:(100PPMNO:(100PPMNO);	74.3900 22.8000 55.2100
CO-PPM CO-PPM CO-PPM	2	.250	500PPM LO 500PPM LO 500PPM LO	1.1993 1.4782 .7817	17.680	500PPM LO 500PPM LO 500PPM LO	486.4528 56.8362 116.8602
HC-PPM HC-PPM HC-PPM	2	11.960 12.460 12.370		5.9800 6.2300 6.1850	41.790	500PPM LO 50PPM LO 100PPM LO	473.3000 20.8950 63.6600
		í	5M EMISSIONS	:∕PHA3E		TOTAL DI	L FAC VMIX

		GM EMISSIO		=	TOTAL DIL FAC VMIX
PHAGE	COS	HO::	CO	HC	REVS (DF) (CU FT)
1	2637.917	10.265	44.265	21.146	11641. 6.7824 2765.79
1	734.796	2.859	12.330	5.890	6M/MI (FOP 3.590 MI)
2	2747.973	5.360	8.652	1.175	19905. 11.4440 4729.23
5	711.910	1.389	2.241	.304	GM/MI (FOR 3.860 MI)
3	2207.841	7.683	10.693	2.651	11739. 8.4499 2789.07
	612.269	2.131	2.962	.735	GM/MI (FOP 3.606 MI)
TOTAL	7593.731	23.309	63.600	24.972	OGM/TEST)
TOTAL	686.843	2.108	5.753	2.259	OGM/MI FOR 11.056 MIY
TOTAL	689.221	1.898	4.530	1.580	OWTO GM/MI FOR 7.459 MIY

MP6 COMPOSITE FUEL ECONOMY - MPG BAG 1972 COLD FTP(7.450 MI) = 11.926 1 11.474 1972 HOT FTP (7.466 MI) = 13.246 2 12.379 12.614 1975 FTP (11.056 MI) = 3 14.321 1975 MTD FTP (7.459 MI) = 12.644 AV6 12.725

FVI DN, SA=6+5=11 BTDC, #45 JETS EB1 - D2 DATA N.G., CHOKE POSITION (CH 78) QUIT IN COLD 505

 PROGRAM: F.V.I.
 TEST TYPE: 75/FTP-CH
 TEST 6

 VEHICLE: CHEVY
 VEHICLE ID: 1L39k3C201052
 DATE: 1-19-76

 DRIVER: J.A.
 INSTR OPEP: R.B.

 CYL: 8
 CID: 350
 TRANS: AUTO
 ODOM: 5500.4 MI

 SITE: 4
 DIW: 4500
 ACTHP: 14.
 IHP: 11.52

DAY 8019 TAPE P756 BENCH NO. 2 %RH= 51.35 PAMB= 14.057 TAMB= 73.30

OCTAL CODES: WOPD A = 000222 000222 000222 000222 000222 004032 WOPD B = 010444 010444 010444 010444 010444 010444 BAG DATA INPUT DRDEP: 2A.3A,1A.2E,3E.1E.

			MILES	GAI-GM	GAL	MPG
CVS DELTAP⇒ 1.933	AH =	65.4427	3.640	975.	.3485	10.446
CVG PIN = 12.600	P§AT =	.4059	3.950	915.	.3270	12.079
CV2 TIM = 100.700	AHFAC =	.9570	3.650	787.	2813	12.977
YO = .2929		TOTALE	11.240	2677.	.9568	11.748
					WTD FTP	11.953

BAG NFULL S	AMBIENT SAMPLE	EXHAUST DAMP	LE
	CL SCALE VALUE	NEULL SCL SCALE	VALUE
CD2-% 1 5.300	4 % .1776	2 35.900 4%	2.0546
CD2-% 2 5.170	4 % .1736		1.2951
CD2-% 3 5.230	4 % .1756		1.7461
HD:-PPM 2 .210	100PPMNOX .3500 100PPMNOX .2100 100PPMNOX .1200	0 21.470 100PPMH⊡K	84.2000 21.4700 54.7700
CO-PPM 2 .130	500PPM LO 1.506: 500PPM LO 1.143: 500PPM LO .781:	31.440 500PPM LO	683.3005 110.0079 206.9578
HC-PPM 1 13.550 HC-PPM 2 13.900 HC-PPM 3 13.230	50PPM LD 6.950	0 44.010 50PPM LO	527.6000 22.0050 34.3800
PHAGE COS	SM EMISSIONS/PHAGE NOX CO	. – – . – .	L FAC VMIX DF) (CU FT)
1 2714.367	11.946 61.766	23.411 11615. 6.	1589 2746.78
1 745.705	3.282 16.969	6.432 GM/MI (FOR	3.640 MI)
2 2779.420	5.192 16.913	1.209 19905. 10.	2426 4707.24
2 703.651	1.314 4.282	.306 GM/MI /FOR	3.950 MI)
3 2287.493	7.842 18.822	1.294 11703. 7.	5695 2767.59
3 626.710	2.148 5.157	.355 6M/MI (FOR	3.650 MI
TOTAL 7781.280 TOTAL 692.285 TOTAL 691.261	24.980 97.502 2.222 8.675 1.948 7.138	25.915 (GM/TEST) 2.306 (GM/MI FOR 1.583 (WTD GM/MI	11.240 MI) FOP 7.596 MI)
COMPOSITE FUE	_ ECONOMY - MPG	BAG MPG	
1972 COLD FTP(7.	590 MI) = 11.818	1 11.186	

COMPOSIJE FOEF EFONOMA - WAR	BHG	MHG
1972 COLD FTP(7.590 MI) = 11.818	1	11.186
1972 HOT FTP (7.600 MI) = 13.135	2	12.467
1975 FTP (11.240 MI) = 12.434	3	13.945
1975 WTD FTP (7.596 MI) = 12.535	AV6	12.533

F.V.I. COMFIGURATION, SA=11 , #45 JETS - EB1 02 DATA N.G.; CHOKE POSITION DATA N.G. SA=11

PPOGRAM: F.V.I. TEST TYPE: 75°FTP-CH TEST# 7

VEHICLE: CHEVY VEHICLE ID: 1139K3C201052 DATE: 1-20-78

DPIVER: J.A. INSTR BPER: R.B.

AMBIENT SAMPLE

DAY 8020 TAPE P757 BENCH NO. 2 - MPH= 43.17 PAMB= 14.124 TAMB= 72.000

OCTAL CODES: WORD A = 000232 000232 000232 000232 000432 004032 WORD B = 010244 010244 010244 010244 010244

BAG DATA IMPUT ORDER: 28.3A,18.2E,3E.1E.

			MILES	GAS-6M	GAL	MPG
CV9 DELTAP= 1.942	ЙH = 5	52.2765	3.632	970.	.3467	10.477
CVS PIN = 12.860	PSAT =	.3887	3.928	914.	.3267	12.025
CVS TIN = 100.800	AHFAC =	.9035	3.628	774.	.2766	13.115
8SeS. = 0V		TOTALS	11.188	2658.	.9500	11.777
					WITD FIR	11.967

EXHAUST SAMPLE

MP6

10.911

12.483

14.289

12,561

BAG

1 2

3

AV6

BAG NFULL GO	L 3CALE VA	ALUE %FULL SCI	Z GALE	
CO2-% 1 1.300 CO2-% 2 1.250 CO2-% 3 1.120	4 % 4 % 4 %	.0446 55.510 .0429 32.060 .0387 41.990	4 💖	2.0857 1.1462 1.5354
MK-PPM 2 .160	100PPMNOX 100PPMNOX 100PPMNOX	.1600 23.610	100PPMNO); 100PPMNO); 100PPMNO);	92.0700 23.6100 57.8300
CO-PPM 1 .500 CO-PPM 2 .110 CO-PPM 3 .000		5.7359 75.170 1.2242 11.530 .0000 26.240	SKBBW FO	033.0239 118.4014 246.7313
HC-PPM 1 14.030 HC-PPM 2 13.220 HC-PPM 3 12.390	50PPM LO 6	7.0150 97.870 6.6100 42.240 6.1950 72.880	50PPM LO	978.7000 21.1200 72.8800
PHAΣE CO2	M EMISSIONS/PH NOX: CO			.FAC VMIX F) (CU FT)
1 2699.550 1 740.515		838 40.225 634 11.075	10496. 5.8 6M/MI (FOP	596 2531.94 3.632 MI)
2 2757.508 2 702.013		577 1.183 729 .301	19916. 11.5 GM/MI (FOR	502 4804.31 3.928 MI)
3 2205.588 3 607.935		050 3.119 353 .860	11746. 8.5 GM/MI (FOP	493 2833.47 3.628 MI)
TOTAL 7652.647 TOTAL 684.005 TOTAL 684.219		465 44.528 393 3.980 079 2.680	.GM/TEST) ∙GM/MI FOP .UTD GM/MI	11.188 MI) FOP 7.558 MI)

F.V.I. COMFIGURATION.#45 JETS: CVS ON SPEED #2 UNTIL 110 SEC.: RADIATOR FAM LEFT ON DURING SOAK. SA=11

11.675

13.289

12.411

12.544

COMPOSITE FUEL ECONOMY - MPG

1972 COLD FTP(7.560 MI) = 1972 HOT FTP (7.556 MI) =

1975 FTP (11.188 MI) =

1975 WTD FTP (7.558 MI) =

PROGRAM: F.V.I. TEST TYPE: 75°FTP-CH TEST# 8
VEHICLE: CHEVY VEHICLE ID: 1L39k3C201052 DATE: 1-23-7

DPIVEP: J.A. IMSTP OPEP: P.B.

DAY 8023 TAPE P758 BENCH NO. 2 %PH= 31.50 PAMB= 14.093 TAMB= 73.50

BCTAL CDDES: WORD A = 000222 000222 000222 000222 000222 001032 WDDRD B = 010244 010444 010444 010444 010444 010444

BAG DATA IMPUT ORDER: 2A,3A,1A,2E,3E,1E,

MILES GAS-GM GAL MPG
CVS DELTAP= 1.937 AH = 40.0779 3.599 846. .3024 11.900
CVS PIN = 12.642 PSAT = .4086 3.907 870. .3109 12.565
CVS TIN = 101.000 AHFAC = .8590 3.608 731. .2613 13.810
V0 = .2929 TOTALS 11.113 2447. .8746 12.707
MITD FTP 12.748

;	BAG MEULL S	AMBIEHT SAM CL SCALE	PLE VALUE	E: NFULL CCI	KHAUST SAMP L SCALE	LE VALUE
002-% %-800 %-800	1 1.460 2 1.510 3 1.510	4 %	.0498 .0515 .0515	46.610 30.290 40.770	4:	1.7210 1.0783 1.4869
NX-PPM NX-PPM NX-PPM	2 .150	100PPMNOX 100PPMNOX 100PPMNOX	.0800 .1500 .1000	25.590	100PPMNO;; 100PPMNO;; 100PPMNO;;	81.0300 25.5900 64.8700
CO-PPM CO-PPM CO-PPM	.210	500PPM LO 500PPM LO 500PPM LO	.8095 1.3666 .8930	37.400	2KPPM LO 500PPM LO 500PPM LO	906.5941 135.6321 119.1561
HC-PPM HC-PPM HC-PPM	2 12.970	50PPM LO	6.2900 6.4850 6.2600	87.210 43.730 67.060		174.4200 21.8650 33.5300
PHATE	008	GM EMIGSION HOX	Σ∕PHAΣE CO	нс		L FAC YMIX DF) (CU FT)
1 1	2400.403 667.149	10.392 2.888	82.403 22.902	7.614 2.116	11636. 7.3 GM MI (FOP	3259 2758.96 3.598 MI)
2 2	2524.624 646.180	5.592 1.431	20.922 5.355	1.227 .314	19917. 12.3 GM MI (FOR	2477 4722.44 3.907 MI)
3 3	2092.963 580.089	8.442 2.340	10.930 3.030	1.279 .355	11813. 8.º GM/MI (FOP	9206 2800.93 3.608 MI)
TOTAL TOTAL TOTAL	7017.989 631.512 632.416	24.426 2.198 1.980	114.256 10.281 8.336	10.120 .911 .697		11.113 MI) FDP 7.511 MI)
1972 C 1972 H 1975 F	MPOSITE FUE OLD FTP(7. OT'FTP (7. TP (11. TD FTP (7.	505 MI) = 515 MI) = 113 MI) =	13.011 14.254	2 :	MPG 12.493 13.527 15.134 13.718	

MODIFIED BASELINE (FVI OFF) - SA=6+10=16: #42 JETS: 3A NOT WORKING UNTIL DURING BAG 2 FILL.

ORIGINAL PAGE IS OF POOR QUALITY

TEST TYPE : 75/FTP-CH TEST# 9 PP□GPAM: F.V.I.

VEHICLE ID: 1L391.3C201052 DATE: 1-24-78 VEHICLE: CHEVY

INSTR OPEP: R.B. DPIVEP: J.A.

DDOM: 5537.5 MI CID: 350 · TRANS: AUTO CYL: 8 DIM: 4500 ACTHP: 14. IHP: 11.52 SITE: 4

DAY 8024 TAPE P759 BENCH NO. 2 %RH= 10.60 PAMB= 14.218 TAMB= 71.500

MDRD A = 000222 000222 000222 000222 000222 001032DOTAL CODES:

WORD B = 010444 010444 010444 010444 010444 010444 BAG DATA IMPUT ORBER: 2A.3A.1A.2E.3E.1E.

WITD FIP

12.788

MPG MILES GAS-GM GAL 3.609 871. .3113 11.594 AH = 12.4257CVG DELTAP= 1.955 .3088 CVT PIH = 12.740 CVC TIH = 99.900 PSAT = .3882 3.898 864. 12.623 .7727 712. .2545 3.595 14.128 AHFAC = .3746 TOTALS 11.102 2447. 12.694 V0 = .2926

•	BAG *:FULL 3	AMBIENT SAM CL SCALE		ECHAUGT CAMPLE MFULL SCL SCALE VALUE	
082-1. 082-1: 082-1:	2 .990	4 % 4 % 4 %	.0348 .0344 .0338	29.450 4 °: 1.0463	
MS-PPM MS-PPM MS-PPM	2 .110	100PPMNOX 100PPMNOX 100PPMNOX	.1000 .1100 .1100	27.640 100PPMNOX 27.6400	
CO-PPM CO-PPM CO-PPM	2 .070	500PPM LO 500PPM LO 500PPM LO	1.2271 .9765 .7817	24.780 500PPM LD 83.2288	
	1 9.410 2 9.710 3 10.030	50PPM LO	4.7050 4.8550 5.0150	35.450 50PPM LO 17.7250	
DUGGE	CD2	SM EMISSION NOW	S/PHACE CO	TOTAL DIL FAC YMIX HC REVS (DF) (CU FT)	
PHASE 1	2404.000	10.632	90.014	6.600 11600. 7.3859 2775.05	
1	666.113	2.946	24.942	1.829 GM:MI (FOP 3.609 MI)	
<u>s</u> .	2505.150 642.676	5.488 1.408	12.926 3.316	1.031 19906. 12.6847 4762.08 .264 GM/MI (FOR 3.898 MI)	
3 3	2006.378 558.102	7.304 2.032	10.642 2.960	1.458 11739. 9.4148 2808.30 .405 GM/MI (FOP 3.595 MI)	
TOTAL TOTAL TOTAL	6915.528 622.908 624.392	2.110	113.582 10.231 7.689	9.088 (GM/TEST) .819 (GM/MI FOR 11.102 MI) .626 (WTD GM/MI FOR 7.499 MI))
100	MPOSITE FUEL	ЕСОНОМУ —	MP6	BAG MPG	

FVI OFF, SA=16, \$42 JETS. P759 RAN AWAY AFTER END OF DRIVING CYCLE - NO POST TEST HEADERS - BAG READS ON P760

1972 COLD FTP: 7.507 MI: = -

1972 HOT FTP (7.493 MI) =

1975 FTP (11.102 MI) = 13.822

1975 WTD FTP / 7.499 MI) ≈ 13.890

13.066

14.583

12.471

15.723

13.954

13.670

1

2

3

AVG

TEST TYPE : 75/FTP-CH VEHICLE ID: 1L3903C201058 TEST# 10 PROGRAM: F.V.I. DATE: 1-25-7 VEHICLE: CHEVY

DRIVER : J.A. INSTR OPER: P.B.

TRAMS: AUTO CYL: 8 CID: 350 DDOM: 5548.5 MI DIM: 4500 GITE: 4 ACTHP: 14. IHP: 11.52

DAY 8025 TAPE P761 BENCH MO. 2 %RH= 12.90 PAMB= 14.210 TAMB= 72.84

MOPD A = 000226 000226 000226 000226 000236 OCTAL CODES: WOPD B = 010444 010444 010444 010444 010444 010444

BAG DATA IMPUT OPDER: 2A.3A.1A,2E,3E.1E,

			MILES	6A2-6M	GAL	MPG
CVS DELTAP= 1.951	AH =	15.8150	3.600	884.	.3159	11.395
CVS PIN = 12.745	PSAT =	.3992	3.900	861.	.3077	12.674
CV3 TIN = 101.100	AHFAC =	.7824	3.558	712.	.2545	13.982
7927. = ۷0		TOTALS	11.058	2457.	.8781	12.593
					WID FIF	12.733

	AMBIENT SAMPLE			EXHAUST CAMPLE		
	BHIS	*FULL SO	CL 3CALE	VALUE	%FULL SCL SCALE	VALUE
002-% 002-% 002-%	1 2 3	1.340 1.250 1.280	4 % 4 % 4 %	.0459 .0429 .0439	45.980 4 % 29.580 4 % 39.240 4 %	1.6956 1.0512 1.4263
M:(-PPM MX-PPM N:(-PPM	ΙĒ	.160 .160 .100	100PPMNOX	.1600 .1600 .1000	87.560 100PPMNO:(26.850 100PPMNO); 61.800 100PPMNO);	87.5600 26.8500 61.8000
CO-PPM CO-PPM	5	.380 .120 .000		1.8415 1.1157 .7817	73.930 2KPPM LO 25.700 500PPM LO 27.850 500PPM LO	997.7058 86.8115 95.3298
HC-PPM HC-PPM HC-PPM	ā	10.280 10.520 10.150	50PPM LO 50PPM LO 50PPM LO	5.1400 5.2600 5.0750	84.080 200PPM LD 37.230 50PPM-LD 59.260 50PPM LD	168.1600 18.6150 29.6300

		GM EMICSIE	IHSZPHAGE		TOTAL DIL FAC YMIX
PHACE	002	HOX	CB	HC	REV3 (DF) (CU FT)
i	2381.683	10.276	91.104	7.416	11614. 7.3945 2774.02
1	661.579	2.854	25.307	2.060	GM/MI (FBP 3.600 MI)
2	2492.596	5.376	13.439	1.069	19894. 12.6202 4751.71
2	639.127	1.379	3.446	.274	GM-MI (FOP 3.900 MI)
3	2010.822	7.311	8.724	1.146	11706. 9.3136 2795.99
3	565.155	2.055	2.452	.322	GM/MI (FOR 3.558 MI)
TOTAL	6885.101	22.963	113.267	9.631	(GM/TEST)
TOTAL	622.635	2.077	10.243	.871	(GM/MI FOR 11.058 MI)
TOTAL	623.646	1.867	7.688	.656	(WTD GM/MI FOR 7.476 MI)
CO	MPOSITE FU	EL ECONOMY	- MPG	BAG	MPG

1972 COLD FTP(7.500 MI) = 13.130 12.528 1 1972 HOT FTP (7.458 MI) = 1975 FTP (11.058 MI) = 14.551 13.740 2 15.557 13.824 3 13.942 1975 WTD FTP (7.476 MI) = 13.904 AV6

FVI OFF. 3A=6+10=16, #42 JETS; NO TOTALIZED MILES OR SECONDS UNTIL HOT 505 - USE FTP MILES AND SECONDS

*** BAG * PEV 1-24-78 *** TODAY IS 1-26-78 IT IS 2:32 PM

TEST TYPE : 75'FTP-CH TEST# 11 PROGRAM: F.V.I. VEHICLE ID: 1L39K3C201502 DATE: 1-26-78
INSTR DPER: R.B. VEHICLE: CHEVY

DRIVER : J.A.

TPANS: AUTO DDDM: 5565.7 MI CID: 350 CYL:8 IHP: 11.52 ACTHP: 14. GITE: 4 DIM: 4500

DAY 8026 TAPE 1013 BENCH NO. 2 NPH= 15.41 PAMB= 14.134 TAMB= 75.420

MILES COT CM

COL

OCTAL CODES:

BAG DATA INPUT OPDEP: 2A,3A,1A,2E,3E,1E,

			MILLES	PHIPPI	ĿĦŁ	リリトラ
CVS DELTAP= 1.943	AH =	20.7346	3.600	865.	.3091	11.645
CVS PIN = 12.669	PSAT =	.4354	3.912	841.	.3006	13.015
CVE TIN = 101.100	AHFAC =	.7968	3.581	706.	.2523	14.192
8595. = OV		TOTALE	11.093	2412.	.8620	12.868
					WID FIP	13.023

	AMBIENT CAMPLE BAG %FULL CCL SCALE VALUE			EXHAUST CAMPLE %FULL SCL 3CALE VALUE		
CD2-% CD2-% CD2-%	1 2 3	1.520 1.460 1.580	4 *: 4 *: 4 %	.0518 .0498 .0538	46.520 4 % 29.740 4 % 39.510 4 %	1.7174 1.0573 1.4369
MX-PPN MX-PPN MX-PPN	12		100PPMHOX 100PPMNOX 100PPMNOX	.1400 .1600 .1300	83.640 100PPMNOX 26.740 100PPMNOX 63.850 100PPMNOX	83.6400 26.7400 63.8500
CO-PPN CO-PPN CO-PPN	1 2	.010	500PPM LO 500PPM LO 500PPM LO	1.4224 .8095 .7817	63.080 2kPPM LO 25.550 500PPM LO 31.760 500PPM LO	734.0328 86.2248 111.3439
HC-PP1 HC-PP1 HC-PP1	1 Ž	9.660 10.400 10.080	50PPM LO 50PPM LO 50PPM LO	4.8300 5.2000 5.0400	82.710 200PPM LO 35.580 50PPM LO 60.480 50PPM LO	165.4200 17.7900 30.2400

PHASE	coa	SM EMISSION NOX	CO CO	HC	TOTAL DIL FAC VMIX REVS (DF) (CU FT)
1	2389.083	9.929	66.559	7.254	11599. 7.4142 2754.86
1	663.634	2.758	18.489	2.015	GM⋅MI (FOP 3.600 MI)
įz	2479.395	5.425	13.324	1.004	19905. 12.5498 4727.61
	633.792	1.387	3.406	.257	GM/MI (FOP 3.912 MI)
3	2004.692	7.656	10.155	1.170	11720. 9.2345 2783.60
3	559.813	2.138	2.836	.327	GM/MI :FOR 3.581 MI)
TOTAL	6873.170	23.010	90.037	9.428	(GM/TEST)
TOTAL	619.595	2.074	8.117	.850	(GM/MI FOR 11.093 MI)
TOTAL	619.789	1.874	6.359	.638	(WTD GM/MI FOR 7.501 MI)
	MPOSITE FU	EL ECONOMY -	MPG	BAG	MPG
	OLD FTP 7	.512 MI) =	13.270	1	12.685

2

13.857

15.687

14.077

AV6 1975 WTD FTP / 7.501 MI' = 14.036

FVI DFF. SA=16. #42 JETS

1972 HOT FTP (7.493 MI) =

1975 FTP (11.093 MI) =

14.676

13.965

PROGRAM: F.V.I.

TEST TYPE: 75'FTP-CH

VEHICLE: CHEVY

VEHICLE ID: 1L39K3C201052

DATE: 1-27-7:
DRIVER: J.A.

INSTR OPER: R.B.

DAY 8027 TAPE I014 BENCH NO. 2 MPH= 21.48 PAMB= 14.160 TAMB= 75.70

OCTAL CODET: WORD A = 000226 000226 000226 000226 001036 WORD B = 010444 010444 010444 010444 010444 010444

BAG DATA IMPUT OPDEP: 2A.3A.1A.2E.3E.1E.

		MILES GAS-GM	SAL	MPG
		HITCHS OUT OU	-5116	111 C
CVS DELTAP= 1.944	AH = 29.1800	3.613 864.	.3098	11.700
CVS PIH = 18.697	P?AT = .4395	3.911 859.	.3070	12.739
CV2 TIN = 101.800	AHFAC = .8228	3.604 713.	.2548	14.143
VO = .2928	TOTALS	11.128 2436.	.8706	12.782
			NTD FTP	12.878

		1911. D. 1	FTP 12.878
AMBIENT CAM	1PLE	EMHAUST SAMP	
BAG MFULL COL SCALE	VALUE .FULL	ICL SCALE	VALUE
CD2-% 1 1.640 4 %		950 4%	1.7348
CD2-% 8 1.520 4 % CD2-% 3 1.430 4 %	.0518 30.0 .0489 39.5		1.0680 1.4393
NC-PPM 1 .210 100PPMNOX NC-PPM.2 .250 100PPMNOX		.70 100PPMHOX 380 100PPMHOX	
NK-PPM 3 .140 100PPMNOK		230 100PPMHOK	63.2300
CD-PPM 1 .730 500PPM LO	2.8232 67.0)00 2HPPM LO	820.4169
CO-PPM 2 .640 500PPM LO			84.8598
CO-PPM 3 .110 500PPM LO	1.0878 27.6	300 500PPM LO	94.3288
HC-PPM 1 11.360 50PPM LO		330 200PPM LO	
HC-PPM 2 11.950 50PPM LO HC-PPM 3 11.050 50PPM LO		680 50PPM LO 670 50PPM LO	19.3400 38.3350
GM EMISSION			L FAC VMIX
PHASE CO2 MOX	CO HC	REVS 4	DF) (CU FT)
	74.396 6.97		3112 2758.58
1 667.720 2.756	20.591 1.93	30 GM⋅MI ⟨FOR	3.613 MI)
2 2502.645 5.512	12.866 1.07		4253 4730.29
2 639.899 1.409	3.290 .27	73 GM/MI /FOR	3.911 MI)
3 2019.931 7.849	8.591 1.58		2250 2791.15
3 560.469 2.178	2.384 .48	ea GM/MI (FOP	3.604 MI)
TOTAL 6935.049 23.318	95.053 9.50		,
TOTAL 623.207 2.095 TOTAL 623.931 1.897	8.614 .85 6.615 .65		11.128 MI) FOR 7.519 MI)
•			
CBMPOSITE FUEL ECONOMY -	13.140 1	5 MPG 12.558	
1972 HOT FTP (7.515 MI) =	14.600 2	13.729	
1975 FTP (11.128 MI) = 1975 WTD FTP (7.519 MI) =	13.868 3 13.935 AV6	15.680 13.989	ODIGDIAT DACE TO
	· · · · · · · · ·	• • • • • • •	ORIGINAL PAGE IS

FVI OFF, #42 JETS, SA=16 C-13

OF POOR QUALITY

PROGRAM: F.V.I.

VEHICLE: CHEVY

DRIVER: J.A.

TEST TYPE: 75'FTP-CH

TEST* 15

VEHICLE ID: 1L39K3C201052

DATE: 2-2-78

INSTP SPER: P.B.

DAY 8033 TAPE 1043 BENCH NO. 2 JRH= 35.03 PAMB= 14.165 TAMB= 73.800

OCTAL CODES: MORD A = 000222 000222 000222 000222 000222 002032

WORD B = 010444 010444 010444 010444 010444 010444

BAG DATA IMPUT ORDER: 2A.3A.1A.2E.3E.1E.

MILES GAS-GM GAL MPG. AH = 44.83513.633 957. .3420 10.622 CVG DELTAP= 1.949 .3449 11.299 3.897 965. CVS PIH = 12.710PSAT = .4127 771. CV3 TIM = 100.200AHFAC = .8758 3.594 .2756 13.043 TOTALE 11.124 2693. .9625 11.558 V0 = .2927WID FIR 11.596

		£	AMBIEN	NT SAMP	LE		EXH	IAUST SAME	LE	
	BAG	%FULL SO	L :	CALE	VALUE	:FULL	SCL	CCALE	VALUE	
COS-*: COS-*: COS-*:	1 2 3	1.660 1.530 1.570	다 : 다 : 다 :	<u>:</u>	.0564 .0521 .0535	. 48.3 33.0 42.3	30	4 % 4 % 4 %	1.7928 1.1836 1.5482	`
MX-PPM MX-PPM MX-PPM	2	.160 .180 .150	100PF 100PF 100PF	MNOX	.1600 .1800 .1600	61.4 15.4 47.6	¥50 1	00PPMHOX 00PPMHOX 00PPMHOX	61.4800 16.4500 47.6700	
CO-PPM CO-PPM	2	.500 .370 .410	500PF	M LO	2.1774 1.8135 1.9254	63.5	590 5	21.PPM LO 100PPM LO 100PPM·LO	1753.3107 266.8111 350.2177	
HC-PPM HC-PPM HC-PPM	ē	17.280 14.160 12.800	50PP	°M LO °M LO	8.6400 7.0800 6.4000	40.0 39.8 65.a	350	600PPM LO 50PPM LO 50PPM LO	200.3500 19.4250 32.6450	

PHASE	cas	HOX 6M EMISSIE	INS/PHASE CO	HC	TOTAL DIL FAC: VMIX REVS (DF) (CU FT)
1	2509.002	8.067	160.097	8.737	11619. 6.7398 2772.28
1	690.339	2.220	44.065	2.405	GM MI (FOR 3.633 MI)
2	2797.138	3.668	41.510	1.007	19900. 11.0541 4748.11
	717.767	.941	10.652	.258	GM/MI (FOP 3.897 MI)
3	2179.951	6.315	32.184	1.235	11739. 8.4464 2800.91
3	606.553	1.757	9.955	.344	6M/MI (FOR 3.594 MI)
TOTAL	7485.091	18.050	233.781	10.979	(GM/TEST)
TOTAL	672.878	1.623	21.016	.987	(GM/MI FOR 11.124 MI)
TOTAL	681.663	1.430	17.120	.727	(NTD GM/MI FOR 7.508 MI)

COMPOSITE FUEL ECONOMY - MPG BAG MP6 1972 COLD FTP(7.530 MI) = 11.813 1 11.559 1972 HOT FTP , 7.491 MI) = 13.026 2 12.060 (11.124 MI) =12.507 3 14.264 1975 FTP 1975 WID FTP (7.508 MI) = 12.475 AV6 12.628

BASELINE STOCK - #45 JETS - SA=6 (SPARK ANGLE NOW PEALLY 6 - WAS ALMOST 13) - IDLE SPEED RESET (LOWER)

PPBGPAM: F.V.I. TECT TYPE: 75/FTP-CH TECT# 16
VEHICLE: CHEVY VEHICLE ID: 1L3943C201052 DATE: 2-3-78

DRIVER: J.A. INSTRUPER: P.B.

CYL: 8 CID: 350 TRANE: AUTO DDOM: 5626.2 MI GITE: 4 DIM: 4500 ACTHP: 14. IHP: 11.52

DAY 8034 TAPE 1049 BENCH NO. 2 NPH= 20.12 PAMB= 14.166 TAMB= 78.50

DCTAL CDDES: WDPD A = 000222 000222 000222 000222 000222 001032 WDPD B = 010444 010444 010444 010444 010444 010444

BAG DATA INPUT OPDER: 2A.3A.1A,2E.3E.1E,

			MILES	GATHGM	5AL	MPG
CV3 DELTAP= 1.945	AH =	29.9501	3.610	949.	.3392	10.644
CV2 PIH = 12.704	PSAT =	.4817	3.920	997.	.3563	11.001
CV3 TIN = 101.400	AHFAC =	.8253	3.573	779.	.2784	12.833
V0 = .2928		TOTALS	11.103	2725.	.9739	11.400
					WID FIP	11.384

	f BAG %FULL 30	AMBIENT SAMM	PLE VALUE	E: ::FULL SCL	KHAUST SAMP SCALE	LE VALUE
002-%	1 1.790	4 %	.0607	49.550	4 %	1.9405
002-%	2 1.870	4 %	.0633	34.890	4 %	1.2557
002-%	3 1.770	4 %	.0600	43.530	4 %	1.5970
HX-PPM	2 .120	100PPMNOX	.1300	67.710	100PPMNO::	67.7100
NX-PPM		100PPMNOX	.1200	20.200	100PPMNO::	20.2000
NX-PPM		100PPMNOX	.1000	53.650	100PPMNO::	53.6500
CO-PPM	1 .400	500PPM LO	1.8974	85.700	2kPPM LO	1382.3070
CO-PPM	2 .300	500PPM LO	1.6178	44.010	500PPM LO	165.8841
CO-PPM	3 .210	500PPM LO	1.3666	71.530	500PPM LO	312.5600
HC-PPM	1 10.880	50PPM LO	5.4400	76.030	200PPM LD	152.0600
HC-PPM	2 11.320	50PPM LO	5.6600	29.230	50PPM LD	14.6150
HC-PPM	3 11.280	50PPM LO	5.6400	53.960	50PPM LD	26.9800
PHASE	COS (MOX HOLLON	SZPHA3E CO	HC		L FAC VMIX DF) (CU FT)
1	2558.650	8.335 :	125.576	6.641	11590. 6.	7204 2758.62
1	708.767	2.309	34.786	1.840	GM/MI (FOP	3.610 MI)
2	2940.745	4.250	25.656	.734	19884. 10.	5202 4732.73
2	750.190	1.084	6.545	.187	GM/MI /FOR	3.920 MI)
	2231.506		28.609	1.002	11709. 8.	2161 2786.94
3	624.547		8.007	.281	6M/MI KFOR	3.573 MI)
TOTAL	7730.901 696.289 707.501	1.734	16.198	.755	COM MI FOR	11.103 MI) FOR 7.509 MI)
CDI 1972 CI 1972 HI 1975 F 1975 W	MPOSITE FUEL OLD FTP (7.5 OT FTP (7.4 TP (11.1 TD FTP (7.5	ECONOMY - 530 MI) = 193 MI) = .03 MI) = 509 MI) =	MPG 11.592 12.626 12.246 12.160	BAG 1 1 2 1 3 1 AVG 1	1.528 1.652 3.899 2.360 OR	IGINAL PAGE IS POOR QUALITY
ಸಂಕರ್ಣ	INC STOCK- C	UI OCC. MAR	e mero do	\	Q.F.	TOOK MOUTHER

PROGRAM: F.V.I. TEST TYPE : 75°FTP-CH TEST\$ 17 VEHICLE: ÇHEVY VEHICLE ID: 1L39K3C201052 DATE: 2-7-78

DPIVER:).A. INSTR OPER: R.B.

DAY 8038 TAPE 1059 BENCH HD. 2 MRH= 45.50 PAMB= 14.110 TAMB= 74.500

DCTAK CODES: WORD A = 000222 000222 000222 000222 000232 002030 WORD B = 010444 010444 010444 010444 010444 010444

BAG DATA INPUT ORDER: 2A.3A.1A.2E.3E.1E.

			MILES	683-6M	5AL	MPG
CVS DELTAP= 1.943	AH = 6	50.0415	3.528	aaa.	.3570	9.881
CVS PIN = 12.647	PSAT =	.4224	3.900	993.	.3549	10.989
CV: TIN = 99.800	AHFAC =	.9343	3.603	802.	.2866	12.570
V0 = .2928		TOTALS	11.031	2794.	.9986	11.047
					WID FIP	11.153

		į.	AMBIENT	SAMPLE	=		E:	KHAUST :	SAMP	∍LE		
	BAG	NEULL 3	CL 30.	ALE \	ALUE	%FULL	GCL	. GCALE	Ξ	VALU	E	
CDS-% CDS-: CBS-:	1 2 3	1.500 1.510 1.590	4 % 4 % 4 %		.0512 .0515 .0541	50. 34. 43.	530	4 % 4 % 4 %		1.	8634 2417 5878	
HX-PPM HX-PPM	2	.210	100PPM 100PPM 100PPM	NDX	.1800 .2100 .1600	59.4 17.5 46.1	570	100PPMI 100PPMI 100PPMI	KOk.	17.	6500 5700 0400	
CO-PPM CO-PPM CO-PPM	į	.550	500PPM 500PPM 500PPM	LO	3.6972 2.3176 1.8415	16. 48.3 50.3	220	2 % 500PPM 2KPPM	ᄓ	2206. 186. 510.	1572	
HC-PPM HC-PPM HC-PPM	12	11.790 12.190 12.180	50PPM 50PPM 50PPM	LO	5.8950 6.0950 6.0900	59.0 29.1 62.1	740		<u></u>		2000 3700 3750	

PHASE	cos	GM EMISSIC	OD CD	HC	TOTAL DIL FAC VMIX PEVS (DF) (CU FT)
1 1	2599.803	8.293	200.104	13.145	11591. 6.3395 2754.57
	736.906	2.351	56.719	3.726	GM/MI (FOP 3.528 MI)
. S	2932.449 751.910	4.162 1.067	28.719 7.364		19914. 10.6197 4732.50 GM/MI (FOR 3.900 MI)
3	2227.622	6.478	46.820	1.186	11737. 8.1608 2789.26
3	618.269	1.798	12.995	.329	GM/MI (FOR 3.603 MI)
TOTAL	7759.874	18.934	275.643	15.054	(GM/TEST)
TOTAL	703.461	1.716	24.988	1.365	(GM MI FOR 11.031 MI)
TOTAL	712.266	1.529	18.985	.948	(WTD GM/MI FOR 7.471 MI)

COMPOSITE FUEL ECONOMY - MPG	BAG	MPG
4972 COLD FTP(7.428 MI) = 11.09	7 1	10.584
1972 HDT FTP (7.503 MI) = 12.59	0 2	11.606
1975 FTP (11.031 MI) = 11.87	1 3	13.862
1975 WTD FTP (7.471 MI) = 11.90	2 AV6	12.018

BASELINE STOCK- F.V.I. OFF - SA=6 - \$45 JETS - DYNO BRAKE ON @ START -MISSED FIRST RAMP - ONE RESTART (@ START) PROGRAM: F.V.I.TEST TYPE: 75/FTP-CHTEST* 18VEHICLE: CHEVYVEHICLE ID: 1L39M3C201052DATE: 2-8-78

DRIVER: J.A. INSTRUPER: P.B.

DAY 8039 TAPE I060 BENCH NO. 2 %PH= 41.11 PAMB= 14.151 TAMB= 75.200

OCTAL COBES: WOPD A = 000222 000222 000222 000222 000222 002032 WORD B = 010444 010444 010444 010444 010444

BAG DATA INPUT ORDEP: 24.3A.1A.2E.3E.1E,

MILEC GAG-GM MPG 5AL . 3495 CV3 DELTAP= 1.951 AH = 55.2971 3.618 978. 10.351 CVS PIN = 12.689 PSAT = .4323 .3645 3.925 1020. 10.767 .9152 9152 3.600 799. .2856 12.607 TOTAL3 11.143 2797. .9996 11.147 CV5 TIN = 101.200 AHFAC = 7595. = 0V WTD FTP 11.140

	AMBIENT SAMPLE	EMHAUST SAMP	LE
BAG %FULL S	CL SCALE VALUE	MFULL SCL COALE	VALUE
002-% 1 1.500			1.8654
CO2-% 2 1.480			1.2553
CO2+% 3 1.360	0466 .0466	43.920 4 %	1.6126
) 100PPMN⊡): .1100		
	.1300 £ 1000 1300 €		
™:-PPM 3 .100	.1000 .1000 .1000	49.280 100PPMHOX	49.2800
) 500FPM LO 2.0094		1721.2318
) 500PPM LO 1.2271		170.5811
CO-PPM 3 .210)500PPM LO 1.3666	72.350 500PPM LO	317.4432
HC-PPM 1 11.230			217.5500
HC-PPM 2 11.530	- · · · · · · · · · · · · · · · · · · ·		15.9400
HC-PPM 3 11.480) 50PPM LD 5.7400	60.570 50PPM LO	30.2850
	GM EMI33ION3/PHACE		L FAC YMI::
PHACE COS	HOW CO	HC REVS (DF) (CU FT)
1 2609.949	8.368 156.616	9.600 11619. 6.	5071 2762.53
1 721.379	2.313 43.298	2.653 GM/MI (FOP	3.618 MI)
2 2970.290	4.590 26.462	.829 19919. 10.	5184 4735.93
2 756.762	1.169 6.742	.211 GM/MI (FOR	3.925 MI)
3 2276.200	6.810 29.121	1.152 11747. 8.	1340 2792.96
3 632.278	1.892 8.089	.320 GM/MI (FOR	

COMPOSITE FUEL ECONOMY 1972 COLD FTP(7.543 MI) = 1972 HOT FTP (7.525 MI) =	11.336 12.496	ā 11.	115 547 ORIGINAL PAGE IS
1975 FTP (11.143 MI) = 11975 WTD FTP (7.533 MI) =		3 13. AVG 12.	OF POOR OTLATITE

212.199 11.581 (GM-TEST)

1.039

.745

(GM:MI FOR 11.143 MI)

UNTI GMZMI FOR 7.533 MIX

BASELINE 3TOCK (FVI OFF: 3A≠6; #45 JET3) - ENGINE BACKFIRED ONCE DUPING EACH 505 (ON SAME PAMP © APPROX. 360 SEC)

14.647

1.774 19,043

19.768

1.602

TOTAL 7856.438

705.056

715.518

TOTAL

TOTAL