27,061 research outputs found
Rewording the World: Poststructuralism, Deconstruction and the ‘Real’ in Environmental Education
In this paper we question the desirability of the near-schism between (on the one hand) environmental philosophers, advocates and educators who appear to be antagonistic to, and/or dismissive of, poststructuralism and deconstruction and (on the other hand) those that find these philosophies and methodologies generative in their inquiries. We examine the claims of writers who assert that poststructuralism and deconstruction are anti-realist positions and suggest alternative ways of thinking about these matters that might enable environmental educators who currently take opposing positions to work in more commensurable ways
Electrocardiographic safety evaluation of dihydroartemisinin piperaquine in the treatment of uncomplicated falciparum malaria.
Dihydroartemisinin-piperaquine (DP) could become a leading fixed combination malaria treatment worldwide. Although there is accumulating evidence of efficacy and safety from clinical trials, data on cardiotoxicity are limited. In two randomized controlled trials in Thailand, 56 patients had ECGs performed before treatment, 4 hours after the first dose, and 4 hours after the last dose. The mean (95% CI) changes in QTc interval (Bazett's correction) were 2 (-6 to 9) ms and 14 (7 to 21) ms, respectively. These small changes on the third day of treatment are similar to those observed elsewhere in the convalescent phase following antimalarial treatment with drugs known to have no cardiac effects and are therefore likely to result from recovery from acute malaria and not the treatment given. At therapeutic doses, DP does not have clinically significant effects on the electrocardiogram
Construction of the Soudan 2 detector
Progress in the construction of the Soudan 2 nucleon decay detector which is being built at the Soudan iron mine in Minnesota is discussed. The expected event rate and characteristics of low energy neutrino events, muon events, multiple muon events, and other cosmic ray phenomena are discussed
The quantized Hall conductance of a single atomic wire: A proposal based on synthetic dimensions
We propose a method by which the quantization of the Hall conductance can be
directly measured in the transport of a one-dimensional atomic gas. Our
approach builds on two main ingredients: (1) a constriction optical potential,
which generates a mesoscopic channel connected to two reservoirs, and (2) a
time-periodic modulation of the channel, specifically designed to generate
motion along an additional synthetic dimension. This fictitious dimension is
spanned by the harmonic-oscillator modes associated with the tightly-confined
channel, and hence, the corresponding "lattice sites" are intimately related to
the energy of the system. We analyze the quantum transport properties of this
hybrid two-dimensional system, highlighting the appealing features offered by
the synthetic dimension. In particular, we demonstrate how the energetic nature
of the synthetic dimension, combined with the quasi-energy spectrum of the
periodically-driven channel, allows for the direct and unambiguous observation
of the quantized Hall effect in a two-reservoir geometry. Our work illustrates
how topological properties of matter can be accessed in a minimal
one-dimensional setup, with direct and practical experimental consequences.
Estimating China’s Urban Energy Demand and CO2 Emissions: A Bottom-up Modeling Perspective
China is experiencing unprecedented urbanization with the urban share of population expected to grow to nearly 80% by 2050. Chinese urban residents consume nearly 1.6 times as much commercial energy as rural residents, and account for an even larger share of energy and carbon dioxide (CO2) emissions embodied in urban infrastructure and goods. As a result, cities can play an increasingly important role in helping China meet its future energy and CO2 intensity reduction targets. While some individual cities have conducted energy and greenhouse gas emission inventories, China lacks estimates of aggregate urban energy consumption and CO2 emissions that take into consideration detailed sectoral drivers, fuel mixes, and end-uses specific to urban areas. This paper describes the results of a bottom-up, energy end-use modeling methodology for estimating China’s urban energy demand and CO2 emissions for four key demand sectors. We present a detailed modeling framework that characterizes residential and commercial building end-uses in Chinese cities, differentiates between intra-city and inter-city transport attributable to urban residents, and evaluates the urban share of industrial production activity. Scenario analysis is also used to quantify the urban energy and CO2 emissions reduction potential within each sector. We find that the Chinese industrial sector alone accounts for 56% of urban primary energy demand and 62% of urban CO2 emissions in 2010 and holds the greatest mitigation potential – a characteristic unique to Chinese cities. Maximum deployment of commercially-available, cost-effective technologies across all four sectors can also help Chinese urban CO2 emissions peak earlier
The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Taurus
By combining deep optical imaging and infrared spectroscopy with data from
the Two-Micron All-Sky Survey (2MASS) and from previous studies (e.g., Briceno
et al.), I have measured the Initial Mass Function (IMF) for a
reddening-limited sample in four fields in the Taurus star forming region. This
IMF is representative of the young populations within these fields for masses
above 0.02 Msun. Relative to the similarly derived IMF for the Trapezium
Cluster (Luhman et al.), the IMF for Taurus exhibits a modest deficit of stars
above one solar mass (i.e., steeper slope), the same turnover mass (~0.8 Msun),
and a significant deficit of brown dwarfs. If the IMF in Taurus were the same
as that in the Trapezium, 12.8+/-1.8 brown dwarfs (>0.02 Msun) are expected in
these Taurus fields where only one brown dwarf candidate is found. These
results are used to test theories of the IMF.Comment: to be published in The Astrophysical Journal, 24 pages, 6 figures,
also found at http://cfa-www.harvard.edu/~kluhman/taurus
Recommended from our members
Beyond the multidisciplinary in fan studies: Learning how to talk among disciplines
In light of the Fan Studies Network's statement regarding fan studies being overrun with whiteness, we are in a unique position to engage in scholarship that challenges the overwhelmingly white and Global North–centric structures that define how we study fan cultures. Multidisciplinarity, which may be understood as disciplines laid side by side, should be contrasted with interdisciplinarity, which requires true dialogue. Despite recent field-shifting work by fan studies scholars such as Bertha Chin, Lori Morimoto, Rukmini Pande, and Rebecca Wanzo, more work needs to be done to both acknowledge and build on current research in transcultural fandom. In a dialogue that reflects the progress of our own striving toward interdisciplinary and transcultural work in fan studies, we seek to demonstrate a possible way forward for the field of fan studies to become more truly interdisciplinary and transcultural in its focus
Implementing universal multi-qubit quantum logic gates in three and four-spin systems at room temperature
In this paper, we present the experimental realization of multi-qubit gates
in macroscopic ensemble of three-qubit and four-qubit
molecules. Instead of depending heavily on the two-bit universal gate, which
served as the basic quantum operation in quantum computing, we use pulses of
well-defined frequency and length that simultaneously apply to all qubits in a
quantum register. It appears that this method is experimentally convenient when
this procedure is extended to more qubits on some quantum computation, and it
can also be used in other physical systems.Comment: 5 Pages, 2 Figure
- …