21,040 research outputs found

    Welcome to Journal of Ethnobiology and Ethnomedicine

    Get PDF
    Ethnobiology is a multidisciplinary field of study that draws on approaches and methods from both the social and biological sciences. Ethnobiology aims at investigating culturally based biological and environmental knowledge, cultural perception and cognition of the natural world, and associated behaviours and practices. Ethnomedicine is concerned with the cultural interpretations of health, disease and illness and also addresses the health care seeking process and healing practices. Research interest and activities in the areas of ethnobiology and ethnomedicine have increased tremendously in the last decade. Since the inception of the disciplines, scientific research in ethnobiology and ethnomedicine has made important contributions to understanding traditional subsistence and medical knowledge and practice. The Journal of Ethnobiology and Ethnomedicine (JEE) invites manuscripts and reviews based on original interdisciplinary research from around the world on the inextricable relationships between human cultures and nature, on Traditional Environmental Knowledge (TEK), folk and traditional medical knowledge, as well as on the relevance of the above for Primary Health Care (PHC) policies in developing countries

    Piezoelectric copolymer hydrophones for ultrasonic field characterization

    Get PDF
    Hydrophones to be used in the characterization of medical ultrasonic transducers have been fabricated using a new polyvinylidene fluoride/trifluoroethylene (VF2/VF3) copolymer. The copolymer has an advantage over VF2 in that it does not require prestretching before poling. Thin copolymer films can be cast from solution and then poled using the corona discharge method. As there is a need for small‐diameter hydrophones to provide good spatial resolution in measuring highly focused ultrasonic beams, hydrophones with diameter as small as 0.1 mm have been made. Both needle‐type and line hydrophones have been tested and their performance reported. In the case of line hydrophones, the output signal is proportional to the line integral of the acoustic pressure and a computer tomographic technique has been used to reconstruct the beam profiles

    The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Taurus

    Full text link
    By combining deep optical imaging and infrared spectroscopy with data from the Two-Micron All-Sky Survey (2MASS) and from previous studies (e.g., Briceno et al.), I have measured the Initial Mass Function (IMF) for a reddening-limited sample in four fields in the Taurus star forming region. This IMF is representative of the young populations within these fields for masses above 0.02 Msun. Relative to the similarly derived IMF for the Trapezium Cluster (Luhman et al.), the IMF for Taurus exhibits a modest deficit of stars above one solar mass (i.e., steeper slope), the same turnover mass (~0.8 Msun), and a significant deficit of brown dwarfs. If the IMF in Taurus were the same as that in the Trapezium, 12.8+/-1.8 brown dwarfs (>0.02 Msun) are expected in these Taurus fields where only one brown dwarf candidate is found. These results are used to test theories of the IMF.Comment: to be published in The Astrophysical Journal, 24 pages, 6 figures, also found at http://cfa-www.harvard.edu/~kluhman/taurus

    The effect of magnetic fields on star cluster formation

    Get PDF
    We examine the effect of magnetic fields on star cluster formation by performing simulations following the self-gravitating collapse of a turbulent molecular cloud to form stars in ideal MHD. The collapse of the cloud is computed for global mass-to-flux ratios of infinity, 20, 10, 5 and 3, that is using both weak and strong magnetic fields. Whilst even at very low strengths the magnetic field is able to significantly influence the star formation process, for magnetic fields with plasma beta < 1 the results are substantially different to the hydrodynamic case. In these cases we find large-scale magnetically-supported voids imprinted in the cloud structure; anisotropic turbulent motions and column density structure aligned with the magnetic field lines, both of which have recently been observed in the Taurus molecular cloud. We also find strongly suppressed accretion in the magnetised runs, leading to up to a 75% reduction in the amount of mass converted into stars over the course of the calculations and a more quiescent mode of star formation. There is also some indication that the relative formation efficiency of brown dwarfs is lower in the strongly magnetised runs due to the reduction in the importance of protostellar ejections.Comment: 16 pages, 9 figures, 8 very pretty movies, MNRAS, accepted. Version with high-res figures + movies available from http://www.astro.ex.ac.uk/people/dprice/pubs/mcluster/index.htm

    Cosmological Implications of the Very High Redshift GRB 050904

    Get PDF
    We report near simultaneous multi-color (RIYJHK) observations made with the MAGNUM 2m telescope of the gamma ray burst GRB 050904 detected by the SWIFT satellite. The spectral energy distribution shows a very large break between the I and J bands. Using intergalactic transmissions measured from high redshift quasars we show that the observations place a 95% confidence lower limit of z=6.18 on the object, consistent with a later measured spectroscopic redshift of 6.29 obtained by Kawai et al. (2005) with the Subaru telescope. We show that the break strength in the R and I bands is consistent with that measured in the quasars. Finally we consider the implications for the star formation history at high redshift.Comment: Accepted for publication in the Astrophysical Journal. Expanded introduction and discussio

    Plasmon attenuation and optical conductivity of a two-dimensional electron gas

    Full text link
    In a ballistic two-dimensional electron gas, the Landau damping does not lead to plasmon attenuation in a broad interval of wave vectors q << k_F. Similarly, it does not contribute to the optical conductivity \sigma (\omega, q) in a wide domain of its arguments, E_F > \omega > qv_F, where E_F, k_F and v_F are, respectively, the Fermi energy, wavevector and velocity of the electrons. We identify processes that result in the plasmon attenuation in the absence of Landau damping. These processes are: the excitation of two electron-hole pairs, phonon-assisted excitation of one pair, and a direct plasmon-phonon conversion. We evaluate the corresponding contributions to the plasmon linewidth and to the optical conductivity.Comment: 8 pages, 4 figures; final form, misprints correcte

    Implementing universal multi-qubit quantum logic gates in three and four-spin systems at room temperature

    Full text link
    In this paper, we present the experimental realization of multi-qubit gates % \Lambda_n(not) in macroscopic ensemble of three-qubit and four-qubit molecules. Instead of depending heavily on the two-bit universal gate, which served as the basic quantum operation in quantum computing, we use pulses of well-defined frequency and length that simultaneously apply to all qubits in a quantum register. It appears that this method is experimentally convenient when this procedure is extended to more qubits on some quantum computation, and it can also be used in other physical systems.Comment: 5 Pages, 2 Figure
    corecore