3,594 research outputs found

    New Experimental Limits on Macroscopic Forces Below 100 Microns

    Full text link
    Results of an experimental search for new macroscopic forces with Yukawa range between 5 and 500 microns are presented. The experiment uses 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds. No signal is observed above the instrumental thermal noise after 22 hours of integration time. These results provide the strongest limits to date between 10 and 100 microns, improve on previous limits by as much as three orders of magnitude, and rule out half of the remaining parameter space for predictions of string-inspired models with low-energy supersymmetry breaking. New forces of four times gravitational strength or greater are excluded at the 95% confidence level for interaction ranges between 200 and 500 microns.Comment: 25 Pages, 7 Figures: Minor Correction

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Successful computationally-directed templating of metastable pharmaceutical polymorphs

    Get PDF
    A strategy of using crystal structure prediction (CSP) methods to determine which, if any, isostructural template could facilitate the first crystallization of a predicted polymorph by vapor deposition, is extended to the fenamate family. Mefenamic acid (MFA) and tolfenamic acid (TFA) are used as molecules with minimal chemical differences, whereas flufenamic acid (FFA) shows greater differences in the substituents. The three crystal energy landscapes were calculated and periodic electronic structure calculations used to confirm the thermodynamic plausibility of possible isostructural polymorphs to experimentally obtainable crystals of the other molecules. As predicted, a new polymorph, TFA form VI was found by sublimation onto isomorphous MFA form I, using a recently developed technique. MFA and TFA form a continuous solid solution with the structure of MFA I and TFA VI at the limits, but the isomorphous MFA:FFA solid solution does not extended to a new polymorph of FFA. The novel solid solution structure of TFA and FFA was found and a new isomorphous polymorph TFA VII was found by sublimation onto this new solid solution template. Sublimation of TFA onto a metal surface at the early stage of deposition gave TFA form VIII. We rationalize the formation of new polymorphs of only TFA

    Comparison of Population-Based Association Study Methods Correcting for Population Stratification

    Get PDF
    Population stratification can cause spurious associations in population–based association studies. Several statistical methods have been proposed to reduce the impact of population stratification on population–based association studies. We simulated a set of stratified populations based on the real haplotype data from the HapMap ENCODE project, and compared the relative power, type I error rates, accuracy and positive prediction value of four prevailing population–based association study methods: traditional case-control tests, structured association (SA), genomic control (GC) and principal components analysis (PCA) under various population stratification levels. Additionally, we evaluated the effects of sample sizes and frequencies of disease susceptible allele on the performance of the four analytical methods in the presence of population stratification. We found that the performance of PCA was very stable under various scenarios. Our comparison results suggest that SA and PCA have comparable performance, if sufficient ancestral informative markers are used in SA analysis. GC appeared to be strongly conservative in significantly stratified populations. It may be better to apply GC in the stratified populations with low stratification level. Our study intends to provide a practical guideline for researchers to select proper study methods and make appropriate inference of the results in population-based association studies

    Association screening for genes with multiple potentially rare variants: an inverse-probability weighted clustering approach

    Get PDF
    Both common variants and rare variants are involved in the etiology of most complex diseases in humans. Developments in sequencing technology have led to the identification of a high density of rare variant single-nucleotide polymorphisms (SNPs) on the genome, each of which affects only at most 1% of the population. Genotypes derived from these SNPs allow one to study the involvement of rare variants in common human disorders. Here, we propose an association screening approach that treats genes as units of analysis. SNPs within a gene are used to create partitions of individuals, and inverse-probability weighting is used to overweight genotypic differences observed on rare variants. Association between a phenotype trait and the constructed partition is then evaluated. We consider three association tests (one-way ANOVA, chi-square test, and the partition retention method) and compare these strategies using the simulated data from the Genetic Analysis Workshop 17. Several genes that contain causal SNPs were identified by the proposed method as top genes

    A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd

    Get PDF
    Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test (‘reactors’). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    Accounting for Population Stratification in Practice: A Comparison of the Main Strategies Dedicated to Genome-Wide Association Studies

    Get PDF
    Genome-Wide Association Studies are powerful tools to detect genetic variants associated with diseases. Their results have, however, been questioned, in part because of the bias induced by population stratification. This is a consequence of systematic differences in allele frequencies due to the difference in sample ancestries that can lead to both false positive or false negative findings. Many strategies are available to account for stratification but their performances differ, for instance according to the type of population structure, the disease susceptibility locus minor allele frequency, the degree of sampling imbalanced, or the sample size. We focus on the type of population structure and propose a comparison of the most commonly used methods to deal with stratification that are the Genomic Control, Principal Component based methods such as implemented in Eigenstrat, adjusted Regressions and Meta-Analyses strategies. Our assessment of the methods is based on a large simulation study, involving several scenarios corresponding to many types of population structures. We focused on both false positive rate and power to determine which methods perform the best. Our analysis showed that if there is no population structure, none of the tests led to a bias nor decreased the power except for the Meta-Analyses. When the population is stratified, adjusted Logistic Regressions and Eigenstrat are the best solutions to account for stratification even though only the Logistic Regressions are able to constantly maintain correct false positive rates. This study provides more details about these methods. Their advantages and limitations in different stratification scenarios are highlighted in order to propose practical guidelines to account for population stratification in Genome-Wide Association Studies

    Efficient Utilization of Rare Variants for Detection of Disease-Related Genomic Regions

    Get PDF
    When testing association between rare variants and diseases, an efficient analytical approach involves considering a set of variants in a genomic region as the unit of analysis. One factor complicating this approach is that the vast majority of rare variants in practical applications are believed to represent background neutral variation. As a result, analyzing a single set with all variants may not represent a powerful approach. Here, we propose two alternative strategies. In the first, we analyze the subsets of rare variants exhaustively. In the second, we categorize variants selectively into two subsets: one in which variants are overrepresented in cases, and the other in which variants are overrepresented in controls. When the proportion of neutral variants is moderate to large we show, by simulations, that the both proposed strategies improve the statistical power over methods analyzing a single set with total variants. When applied to a real sequencing association study, the proposed methods consistently produce smaller p-values than their competitors. When applied to another real sequencing dataset to study the difference of rare allele distributions between ethnic populations, the proposed methods detect the overrepresentation of variants between the CHB (Chinese Han in Beijing) and YRI (Yoruba people of Ibadan) populations with small p-values. Additional analyses suggest that there is no difference between the CHB and CHD (Chinese Han in Denver) datasets, as expected. Finally, when applied to the CHB and JPT (Japanese people in Tokyo) populations, existing methods fail to detect any difference, while it is detected by the proposed methods in several regions
    corecore