10 research outputs found

    Law Librarianship: A Forum

    Get PDF
    Law librarianship is a profession that has a proud history and a bright future, yet it is not without its problems and concerns. For this issue of Law Library Lights, we have gathered together a number of luminaries in the field and asked them a number of questions related to the most important issues facing our community: professional image, additional roles, education and training, ethics, minority recruitment, budget crunch, technology, vendors, and the future. This exchange was published in volume 35, issue number 5, May/June 1992

    An investigation of the diversity of strains of enteroaggregative Escherichia coli isolated from cases associated with a large multi-pathogen foodborne outbreak in the UK

    Get PDF
    Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype

    The Residential Population Generator (RPGen): Parameterization of Residential, Demographic, and Physiological Data to Model Intraindividual Exposure, Dose, and Risk

    No full text
    Exposure to chemicals is influenced by associations between the individual’s location and activities as well as demographic and physiological characteristics. Currently, many exposure models simulate individuals by drawing distributions from population-level data or use exposure factors for single individuals. The Residential Population Generator (RPGen) binds US surveys of individuals and households and combines the population with physiological characteristics to create a synthetic population. In general, the model must be supported by internal consistency; i.e., values that could have come from a single individual. In addition, intraindividual variation must be representative of the variation present in the modeled population. This is performed by linking individuals and similar households across income, location, family type, and house type. Physiological data are generated by linking census data to National Health and Nutrition Examination Survey data with a model of interindividual variation of parameters used in toxicokinetic modeling. The final modeled population data parameters include characteristics of the individual’s community (region, state, urban or rural), residence (size of property, size of home, number of rooms), demographics (age, ethnicity, income, gender), and physiology (body weight, skin surface area, breathing rate, cardiac output, blood volume, and volumes for body compartments and organs). RPGen output is used to support user-developed chemical exposure models that estimate intraindividual exposure in a desired population. By creating profiles and characteristics that determine exposure, synthetic populations produced by RPGen increases the ability of modelers to identify subgroups potentially vulnerable to chemical exposures. To demonstrate application, RPGen is used to estimate exposure to Toluene in an exposure modeling case example

    The Residential Population Generator (RPGen): Parameterization of Residential, Demographic, and Physiological Data to Model Intraindividual Exposure, Dose, and Risk

    No full text
    Exposure to chemicals is influenced by associations between the individual’s location and activities as well as demographic and physiological characteristics. Currently, many exposure models simulate individuals by drawing distributions from population-level data or use exposure factors for single individuals. The Residential Population Generator (RPGen) binds US surveys of individuals and households and combines the population with physiological characteristics to create a synthetic population. In general, the model must be supported by internal consistency; i.e., values that could have come from a single individual. In addition, intraindividual variation must be representative of the variation present in the modeled population. This is performed by linking individuals and similar households across income, location, family type, and house type. Physiological data are generated by linking census data to National Health and Nutrition Examination Survey data with a model of interindividual variation of parameters used in toxicokinetic modeling. The final modeled population data parameters include characteristics of the individual’s community (region, state, urban or rural), residence (size of property, size of home, number of rooms), demographics (age, ethnicity, income, gender), and physiology (body weight, skin surface area, breathing rate, cardiac output, blood volume, and volumes for body compartments and organs). RPGen output is used to support user-developed chemical exposure models that estimate intraindividual exposure in a desired population. By creating profiles and characteristics that determine exposure, synthetic populations produced by RPGen increases the ability of modelers to identify subgroups potentially vulnerable to chemical exposures. To demonstrate application, RPGen is used to estimate exposure to Toluene in an exposure modeling case example

    Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals

    No full text
    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products

    The effect of research activities and winter precipitation on voiding behaviour of Agassiz\u27s desert tortoises (Gopherus agassizii)

    No full text
    Context: There is little information available on how research activities might cause stress responses in wildlife, especially responses of threatened species such as the desert tortoise (Gopherus agassizii). Aims: The present study aims to detect behavioural effects of researcher handling and winter precipitation on a natural population of desert tortoises in the desert of Southwestern United States, over the period 1997 to 2014, through extensive assessments of capture events during multiple research studies, and capture–mark–recapture survivorship analysis. Methods: Juvenile and adult desert tortoises were repeatedly handled with consistent methodology across 18 years during 10 study seasons. Using a generalised linear mixed-effects model, we assessed the effects of both research manipulation and abiotic conditions on probability of voiding. Additionally, we used a Cormack–Jolly–Seber model to assess the effects of winter precipitation and voiding on long-term apparent survivorship. Key results: Of 1008 total capture events, voiding was recorded on 83 (8.2%) occasions in 42 different individuals. Our top models indicated that increases in handling time led to significantly higher probabilities of voiding for juveniles, females and males. Similarly, increases in precipitation resulted in significantly higher probabilities of voiding for juveniles and females, but not for males. Tortoise capture frequency was negatively correlated with voiding occurrence. Cormack–Jolly–Seber models demonstrated a weak effect of winter precipitation on survivorship, but a negligible effect for both voiding behaviour and sex. Conclusions: Handling-induced voiding by desert tortoises may occur during common research activities and years of above average winter precipitation. Increased likelihood of voiding in individuals with relatively low numbers of recaptures suggested that tortoises may have perceived researchers initially as predators, and therefore voided as a defensive strategy. Voiding does not appear to impact long-term survivorship in desert tortoises at this site. Implications: This study has demonstrated that common handling practices on desert tortoise may cause voiding behaviour. These results suggest that in order to minimise undesirable behavioural responses in studied desert tortoise populations, defined procedures or protocols must be followed by the investigators to reduce contact period to the extent feasible

    SLAVERY: ANNUAL BIBLIOGRAPHICAL SUPPLEMENT (2005)

    No full text
    corecore