413 research outputs found

    The Leishmania major BBSome subunit BBS1 is essential for parasite virulence in the mammalian host

    Get PDF
    Bardetā€“Biedl syndrome (BBS) is a human genetic disorder with a spectrum of symptoms caused by primary cilium dysfunction. The disease is caused by mutations in one of at least 17 identified genes, of which seven encode subunits of the BBSome, a protein complex required for specific trafficking events to and from the primary cilium. The molecular mechanisms associated with BBSome function remain to be fully elucidated. Here, we generated null and complemented mutants of the BBSome subunit BBS1 in the protozoan parasite, Leishmania. In the absence of BBS1, extracellular parasites have no apparent defects in growth, flagellum assembly, motility or differentiation in vitro but there is accumulation of vacuole-like structures close to the flagellar pocket. Infectivity of these parasites for macrophages in vitro is reduced compared with wild-type controls but the null parasites retain the ability to differentiate to the intracellular amastigote stage. However, infectivity of BBS1 null parasites is severely compromised in a BALB/c mouse footpad model. We hypothesize that the absence of BBS1 in Leishmania leads to defects in specific trafficking events that affect parasite persistence in the host. This is the first report of an association between the BBSome complex and pathogen infectivity

    Safeguarding community-centred global health research during crises

    Get PDF
    Global health researchers encounter challenges in conducting research during crises, including pandemics, natural disasters and humanitarian conflicts.1 2 External crises often arise without prior notice and disrupt well-planned research. It is difficult to continue research activities under these circumstances, particularly when researchers and communities are at risk.3 Furthermore, community engagement and involvement (CEI), a crucial element in decolonised global health research,4 can become particularly difficult, as the community membersā€™ primary focus may be on survival and acquiring basic needs, which must be a priority above commitment and participation in research. Conducting research in a context of crisis imposes concerns about ethical, credible and equitable research.5 6 The COVID-19 pandemic had a significant impact on global health research, particularly in low-income and middle-income countries (LMICs). Both funding acquisition and scholarly output in LMICs were affected.2 Collaborative research relied on virtual communication platforms, and alternative data collection mechanisms, such as online questionnaires and telephone interviews. However, the validity, reliability and generalisability of such datasets are still subject to extensive discussion.7 Populations without reliable internet access and electronic devices were often excluded from participation, which further exacerbated social inequity, particularly in disadvantaged rural communities.8 9 Here, we share the experience of the Sri Lankan team of the multicountry global health research programme ECLIPSE. We highlight three aspects that will inform the global scientific community in safeguarding research during crises: (1) positioning the research within the crisis context; (2) using CEI for ongoing research and (3) innovating methods and moving beyond the virtual mode

    Genetic validation of Leishmania genes essential for amastigote survival in vivo using N-myristoyltransferase as a model

    Get PDF
    BACKGROUND: Proving that specific genes are essential for the intracellular viability of Leishmania parasites within macrophages remains a challenge for the identification of suitable targets for drug development. This is especially evident in the absence of a robust inducible expression system or functioning RNAi machinery that works in all Leishmania species. Currently, if a target gene of interest in extracellular parasites can only be deleted from its genomic locus in the presence of ectopic expression from a wild type copy, it is assumed that this gene will also be essential for viability in disease-promoting intracellular parasites. However, functional essentiality must be proven independently in both life-cycle stages for robust validation of the gene of interest as a putative target for chemical intervention. METHODS: Here, we have used plasmid shuffle methods in vivo to provide supportive genetic evidence that N-myristoyltransferase (NMT) is essential for Leishmania viability throughout the parasite life-cycle. Following confirmation of NMT essentiality in vector-transmitted promastigotes, a range of mutant parasites were used to infect mice prior to negative selection pressure to test the hypothesis that NMT is also essential for parasite viability in an established infection. RESULTS: Ectopically-expressed NMT was only dispensable under negative selection in the presence of another copy. Total parasite burdens in animals subjected to negative selection were comparable to control groups only if an additional NMT copy, not affected by the negative selection, was expressed. CONCLUSIONS: NMT is an essential gene in all parasite life-cycle stages, confirming its role as a genetically-validated target for drug development

    Global Profiling and Inhibition of Protein Lipidation in Vector and Host Stages of the Sleeping Sickness Parasite Trypanosoma brucei

    Get PDF
    The enzyme N-myristoyltransferase (NMT) catalyzes the essential fatty acylation of substrate proteins with myristic acid in eukaryotes and is a validated drug target in the parasite Trypanosoma brucei, the causative agent of African trypanosomiasis (sleeping sickness). N-Myristoylation typically mediates membrane localization of proteins and is essential to the function of many. However, only a handful of proteins are experimentally validated as N-myristoylated in T. brucei. Here, we perform metabolic labeling with an alkyne-tagged myristic acid analogue, enabling the capture of lipidated proteins in insect and host life stages of T. brucei. We further compare this with a longer chain palmitate analogue to explore the chain length-specific incorporation of fatty acids into proteins. Finally, we combine the alkynyl-myristate analogue with NMT inhibitors and quantitative chemical proteomics to globally define N-myristoylated proteins in the clinically relevant bloodstream form parasites. This analysis reveals five ARF family small GTPases, calpain-like proteins, phosphatases, and many uncharacterized proteins as substrates of NMT in the parasite, providing a global view of the scope of this important protein modification and further evidence for the crucial and pleiotropic role of NMT in the cell

    Current and future strategies against cutaneous parasites

    Get PDF
    Cutaneous parasites are identified by their specific cutaneous symptoms which are elicited based on the parasite's interactions with the host. Standard anti-parasitic treatments primarily focus on the use of specific drugs to disrupt the regular function of the target parasite. In cases where secondary infections are induced by the parasite itself, antibiotics may also be used in tandem with the primary treatment to deal with the infection. Whilst drug-based treatments are highly effective, the development of resistance by bacteria and parasites, is increasingly prevalent in the modern day, thus requiring the development of non-drug based anti-parasitic strategies. Cutaneous parasites vary significantly in terms of the non-systemic methods that are required to deal with them. The main factors that need to be considered are the specifically elicited cutaneous symptoms and the relative cutaneous depth in which the parasites typically reside in. Due to the various differences in their migratory nature, certain cutaneous strategies are only viable for specific parasites, which then leads to the idea of developing an all-encompassing anti-parasitic strategy that works specifically against cutaneous parasites. The main benefit of this would be the overall time saved in regards to the period that is needed for accurate diagnosis of parasite, coupled with the prescription and application of the appropriate treatment based on the diagnosis. This review will assess the currently identified cutaneous parasites, detailing their life cycles which will allow for the identification of certain areas that could be exploited for the facilitation of cutaneous anti-parasitic treatment

    Modeling 5 Years of Subglacial Lake Activity in the MacAyeal Ice Stream (Antarctica) Catchment Through Assimilation of ICESat Laser Altimetry

    Get PDF
    Subglacial lakes beneath Antarcticaā€™s fast-moving ice streams are known to undergo ~1km3 volume changes on annual timescales. Focusing on the MacAyeal Ice Stream (MacIS) lake system, we create a simple model for the response of subglacial water distribution to lake discharge events through assimilation of lake volume changes estimated from Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry. We construct a steady-state water transport model in which known subglacial lakes are treated as either sinks or sources depending on the ICESat-derived filling or drainingrates. The modeled volume change rates of five large subglacial lakes in the downstream portion of MacIS are shown to be consistent with observed filling rates if the dynamics of all upstream lakes are considered. However, the variable filling rate of the northernmost lake suggests the presence of an undetected lake of similar size upstream. Overall, we show that, for this fast-flowing ice stream, most subglacial lakes receive \u3e90% of their water from distant distributed sources throughout the catchment, and we confirm that water is transported from regions of net basal melt to regions of net basal freezing. Our study provides a geophysically based means of validating subglacial water models in Antarctica and is a potential way to parameterize subglacial lake discharge events in large-scale ice-sheet models where adequate data are available

    Schistosoma mansoni cercarial elastase (SmCE): differences in immunogenic properties of native and recombinant forms

    Get PDF
    The Schistosoma mansoni cercarial elastase (SmCE) has previously been shown to be poorly immunogenic in mice. However, a minority of mice were able to produce antibodies against SmCE after multiple immunizations with crude pre- parations containing the enzyme. These mice were partially protected against challenge infections of S. mansoni. In the present study, we show that in contrast to the poor immunogenicity of the enzymatically active native form of SmCE derived from a crude preparation (cercarial transformation fluid), immunization of CBA/Ca mice with two enzymatically inactive forms, namely purified native SmCE or a recombinant SmCE fused to recombinant Schistosoma japonicum gluta- thione S-transferase (rSmCE-SjGST), after adsorption onto aluminum hydroxide adjuvant, induced specific anti-SmCE immunoglobulin G (IgG) in all mice within 2 weeks of the second immunization. The IgG antibody response to rSmCE- SjGST was mainly of the IgG1 subclass. These results suggest that inactive forms of the antigen could be used to obtain the optimum immunogenic effects as a vaccine candidate against schistosomiasis. Mice immunized with the rSmCE- SjGST on alum had smaller mean worm burdens and lower tissue egg counts when compared with adjuvant alone- and recombinant SjGST-injected controls. The native SmCE was antigenically cross-reactive with homologous enzymes of Schistosoma haematobium and Schistosoma margrebowiei

    Safeguarding community-centred global health research during crises

    Get PDF
    Global health researchers face multiple challenges in proceeding with research programmes during crises, including ethical and safety questions, equitable participation of community members and the collection of robust data. ā‡’ In Sri Lanka, the multi country global health programme ECLIPSE adopted innovative research methods in a context dictated by pandemic conditions, and strengthened by community engagement and involvement (CEI), to achieve its goals, provides a model for global health researchers working in crisis settings. ā‡’ Following the government regulations in combination with scientific guidelines, closely monitoring the pandemic and timely prediction, adopting a robust CEI approach at the early stages of research and using innovative methods that moves beyond virtual mode can help navigation of research without disruption. ā‡’ Incorporated crisis preparedness and alternative plans focusing on encouraging the use of CEI in grant proposal development by researchers and a the demand of global health research funders on these key aspects would enhance the ability of research programmes to sustain during crises
    • ā€¦
    corecore