3,538 research outputs found

    Distinctive and pervasive alterations in aqueous humor protein composition following different types of glaucoma surgery

    Get PDF
    PURPOSE: To investigate whether specific glaucoma surgeries are associated with differences in aqueous humor protein concentrations compared to eyes without filters. METHODS: In this cross-sectional study, aqueous humor samples were prospectively collected from control subjects who underwent routine cataract surgery (n=14) and from patients who had different glaucoma filters: Baerveldt aqueous shunt (n=6), Ahmed aqueous shunt (n=6), trabeculectomy (n=5), and Ex-Press trabeculectomy (n=3). Total protein concentrations were determined with Bradford assay. Tryptic digests were analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteins were identified with high confidence using stringent criteria and were quantitatively compared with a label-free platform. Relative protein quantities were compared across groups with ANOVA. Post hoc pair-wise comparisons were adjusted for multiple comparisons. RESULTS: Compared to the control eyes, the aqueous humor protein concentration was increased approximately tenfold in the Ahmed and Baerveldt eyes and fivefold in the trabeculectomy and Ex-Press eyes. Overall, 718 unique proteins, splice variants, or isoforms were identified. No differences in the protein concentrations were detected between the Baerveldt and Ahmed groups. Likewise, the trabeculectomy and Ex-Press groups were remarkably similar. Therefore, the aqueous shunt groups were pooled, and the trabeculectomy groups were pooled for a three-way comparison with the controls. More than 500 proteins differed significantly in relative abundance (ANOVA p<0.01) among the control, aqueous shunt, and trabeculectomy groups. Functional analyses suggested these alterations in relative protein abundance affected dozens of signaling pathways. CONCLUSIONS: Different glaucoma surgical procedures were associated with marked increases in the aqueous humor protein concentration and distinctive changes in the relative abundance of numerous proteins involved in multiple signaling pathways

    Insights into N-calls of mitochondrial DNA sequencing using MitoChip v2.0

    Get PDF
    Developments in DNA resequencing microarrays include mitochondrial DNA (mtDNA) sequencing and mutation detection. Failure by the microarray to identify a base, compared to the reference sequence, is designated an 'N-call.' This study re-examined the N-call distribution of mtDNA samples sequenced by the Affymetrix MitoChip v.2.0, based on the hypothesis that N-calls may represent insertions or deletions (indels) in mtDNA.We analysed 16 patient mtDNA samples using MitoChip. N-calls by the proprietary GSEQ software were significantly reduced when either of the freeware on-line algorithms ResqMi or sPROFILER was utilized. With sPROFILER, this decrease in N-calls had no effect on the homoplasmic or heteroplasmic mutation levels compared to GSEQ software, but ResqMi produced a significant change in mutation load, as well as producing longer N-cell stretches. For these reasons, further analysis using ResqMi was not attempted. Conventional DNA sequencing of the longer N-calls stretches from sPROFILER revealed 7 insertions and 12 point mutations. Moreover, analysis of single-base N-calls of one mtDNA sample found 3 other point mutations.Our study is the first to analyse N-calls produced from GSEQ software for the MitoChipv2.0. By narrowing the focus to longer stretches of N-calls revealed by sPROFILER, conventional sequencing was able to identify unique insertions and point mutations. Shorter N-calls also harboured point mutations, but the absence of deletions among N-calls suggests that probe confirmation affects binding and thus N-calling. This study supports the contention that the GSEQ is more capable of assigning bases when used in conjunction with sPROFILER

    Passerine Birds Breeding under Chronic Noise Experience Reduced Fitness

    Get PDF
    Background Fitness in birds has been shown to be negatively associated with anthropogenic noise, but the underlying mechanisms remain obscure. It is however crucial to understand the mechanisms of how urban noise impinges on fitness to obtain a better understanding of the role of chronic noise in urban ecology. Here, we examine three hypotheses on how noise might reduce reproductive output in passerine birds: (H1) by impairing mate choice, (H2) by reducing territory quality and (H3) by impeding chick development. Methodology/Principal Findings We used long-term data from an island population of house sparrows, Passer domesticus, in which we can precisely estimate fitness. We found that nests in an area affected by the noise from large generators produced fewer young, of lower body mass, and fewer recruits, even when we corrected statistically for parental genetic quality using a cross-fostering set-up, supporting H3. Also, individual females provided their young with food less often when they bred in the noisy area compared to breeding attempts by the same females elsewhere. Furthermore, we show that females reacted flexibly to increased noise levels by adjusting their provisioning rate in the short term, which suggests that noise may be a causal factor that reduces reproductive output. We rejected H1 and H2 because nestbox occupancy, parental body mass, age and reproductive investment did not differ significantly between noisy and quiet areas. Conclusions/Significance Our results suggest a previously undescribed mechanism to explain how environmental noise can reduce fitness in passerine birds: by acoustically masking parent–offspring communication. More importantly, using a cross-fostering set-up, our results demonstrate that birds breeding in a noisy environment experience significant fitness costs. Chronic noise is omnipresent around human habitation and may produces similar fitness consequences in a wide range of urban bird species

    Cultivar Differences and Impact of Plant-Plant Competition on Temporal Patterns of Nitrogen and Biomass Accumulation

    Get PDF
    Current niche models cannot explain multi-species plant coexistence in complex ecosystems. One overlooked explanatory factor is within-growing season temporal dynamism of resource capture by plants. However, the timing and rate of resource capture are themselves likely to be mediated by plant-plant competition. This study used Barley (Hordeum sp.) as a model species to examine the impacts of intra-specific competition, specifically inter- and intra-cultivar competition on the temporal dynamics of resource capture. Nitrogen and biomass accumulation of an early and late cultivar grown in isolation, inter- or intra- cultivar competition were investigated using sequential harvests. We did not find changes in the temporal dynamics of biomass accumulation in response to competition. However, peak nitrogen accumulation rate was significantly delayed for the late cultivar by 14.5 days and advanced in the early cultivar by 0.5 days when in intra-cultivar competition; there were no significant changes when in inter-cultivar competition. This may suggest a form of kin recognition as the target plants appeared to identify their neighbors and only responded temporally to intra-cultivar competition. The Relative Intensity Index found competition occurred in both the intra- and inter- cultivar mixtures, but a positive Land Equivalence Ratio value indicated complementarity in the inter-cultivar mixtures compared to intra-cultivar mixtures. The reason for this is unclear but may be due to the timing of the final harvest and may not be representative of the relationship between the competing plants. This study demonstrates neighbor-identity-specific changes in temporal dynamism in nutrient uptake. This contributes to our fundamental understanding of plant nutrient dynamics and plant-plant competition whilst having relevance to sustainable agriculture. Improved understanding of within-growing season temporal dynamism would also improve our understanding of coexistence in complex plant communities

    The AMANDA Neutrino Telescope and the Indirect Search for Dark Matter

    Get PDF
    With an effective telescope area of order 10^4 m^2, a threshold of ~50 GeV and a pointing accuracy of 2.5 degrees, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe its performance, focussing on the capability to detect halo dark matter particles via their annihilation into neutrinos.Comment: Latex2.09, 16 pages, uses epsf.sty to place 15 postscript figures. Talk presented at the 3rd International Symposium on Sources and Detection of Dark Matter in the Universe (DM98), Santa Monica, California, Feb. 199
    corecore