2,941 research outputs found

    Comparative gene mapping in Arabidopsis lyrata chromosomes 1 and 2 and the corresponding A. thaliana chromosome 1: recombination rates, rearrangements and centromere location

    Get PDF
    To add detail to the genetic map of Arabidopsis lyrata, and compare it with that of A. thaliana, we have developed many additional markers in the A. lyrata linkage groups, LG1 and LG2, corresponding to A. thaliana chromosome 1. We Used a newly developed method for marker development for single nucleotide polymorphisms present in gene sequences, Plus length differences, to map genes in an A. lyrata family, including variants in several genes close to the A. thaliana centromere I, providing the first data on the location of an A. lyrata centromere; we discuss the implications for the evolution of chromosome 1 of A. thaliana. With our larger marker density, large rearrangements between the two Arabidopsis species are excluded, except for a large inversion on LG2. This was previously known in Capsella; its presence in A. lyrata suggests that, like most other rearrangements. it probably arose in the A. thaliana lineage. Knowing that marker orders are similar, we can now compare homologous, non-rearranged map distances to test the prediction of more frequent crossing-over in the more inbreeding species. Our results support the previous conclusion of similar distances in the two species for A. lyrata LG1 markers. For LG2 markers, the distances were consistently, but non-significantly, larger in A. lyrata. Given the two species' large particularly for LG1, suggests that DNA content difference, the similarity of map lengths. crossing-over is more frequent across comparable physical distances in the inbreeder, A. thaliana, as predicted.</p

    Steady, oscillatory, and unsteady subsonic Aerodynamics, production version 1.1 (SOUSSA-P1.1). Volume 2: User/programmer manual

    Get PDF
    A user/programmer manual for the computer program SOUSSA P 1.1 is presented. The program was designed to provide accurate and efficient evaluation of steady and unsteady loads on aircraft having arbitrary shapes and motions, including structural deformations. These design goals were in part achieved through the incorporation of the data handling capabilities of the SPAR finite element Structural Analysis computer program. As a further result, SOUSSA P possesses an extensive checkpoint/ restart facility. The programmer's portion of this manual includes overlay/subroutine hierarchy, logical flow of control, definition of SOUSSA P 1.1 FORTRAN variables, and definition of SOUSSA P 1.1 subroutines. Purpose of the SOUSSA P 1.1 modules, input data to the program, output of the program, hardware/software requirements, error detection and reporting capabilities, job control statements, a summary of the procedure for running the program and two test cases including input and output and listings are described in the user oriented portion of the manual

    Decomposition of multicomponent mass spectra using Bayesian probability theory

    Full text link
    We present a method for the decomposition of mass spectra of mixture gases using Bayesian probability theory. The method works without any calibration measurement and therefore applies also to the analysis of spectra containing unstable species. For the example of mixtures of three different hydrocarbon gases the algorithm provides concentrations and cracking coefficients of each mixture component as well as their confidence intervals. The amount of information needed to obtain reliable results and its relation to the accuracy of our analysis are discussed

    Evolutionary support vector machines and their application for classification

    Get PDF
    We propose a novel learning technique for classification as result of the hybridization between support vector machines and evolutionary algorithms. Evolutionary support vector machines consider the classification task as in support vector machines but use evolutionary algorithms to solve the optimization problem of determining the decision function. They can acquire the coefficients of the separating hyperplane, which is often not possible within classical techniques. More important, ESVMs obtain the coefficients directly from the evolutionary algorithm and can refer them at any point during a run. The concept is furthermore extended to handle large amounts of data, a problem frequently occurring e.g. in spam mail detection, one of our test cases. Evolutionary support vector machines are validated on this and three other real-world classification tasks; obtained results show the promise of this new technique

    The spectral weight of the Hubbard model through cluster perturbation theory

    Full text link
    We calculate the spectral weight of the one- and two-dimensional Hubbard models, by performing exact diagonalizations of finite clusters and treating inter-cluster hopping with perturbation theory. Even with relatively modest clusters (e.g. 12 sites), the spectra thus obtained give an accurate description of the exact results. Thus, spin-charge separation (i.e. an extended spectral weight bounded by singularities) is clearly recognized in the one-dimensional Hubbard model, and so is extended spectral weight in the two-dimensional Hubbard model.Comment: 4 pages, 5 figure

    The influence of the strength of bone on the deformation of acetabular shells : a laboratory experiment in cadavers

    Get PDF
    Date of Acceptance: 24/08/2014 ©2015 The British Editorial Society of Bone & Joint Surgery. The authors would like to thank N. Taylor (3D Measurement Company) for his work with regard to data acquisition and processing of experimental data. We would also like to thank Dr A. Blain of Newcastle University for performing the statistical analysis The research was supported by the NIHR Newcastle Biomedical Research Centre. The authors P. Dold, M. Flohr and R. Preuss are employed by Ceramtec GmbH. Martin Bone received a salary from the joint fund. The author or one or more of the authors have received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this article. This article was primary edited by G. Scott and first proof edited by J. Scott.Peer reviewedPostprin

    Lessons from LIMK1 enzymology and their impact on inhibitor design

    Get PDF
    LIM domain kinase 1 (LIMK1) is a key regulator of actin dynamics. It is thereby a potential therapeutic target for the prevention of fragile X syndrome and amyotrophic lateral sclerosis. Herein, we use X-ray crystallography and activity assays to describe how LIMK1 accomplishes substrate specificity, to suggest a unique ‘rock-and-poke’ mechanism of catalysis and to explore the regulation of the kinase by activation loop phosphorylation. Based on these findings, a differential scanning fluorimetry assay and a RapidFire mass spectrometry activity assay were established, leading to the discovery and confirmation of a set of small-molecule LIMK1 inhibitors. Interestingly, several of the inhibitors were inactive towards the closely related isoform LIMK2. Finally, crystal structures of the LIMK1 kinase domain in complex with inhibitors (PF-477736 and staurosporine, respectively) are presented, providing insights into LIMK1 plasticity upon inhibitor binding

    An astronomical search for evidence of new physics: Limits on gravity-induced birefringence from the magnetic white dwarf RE J0317-853

    Get PDF
    The coupling of the electromagnetic field directly with gravitational gauge fields leads to new physical effects that can be tested using astronomical data. Here we consider a particular case for closer scrutiny, a specific nonminimal coupling of torsion to electromagnetism, which enters into a metric-affine geometry of space-time. We show that under the assumption of this nonminimal coupling, spacetime is birefringent in the presence of such a gravitational field. This leads to the depolarization of light emitted from extended astrophysical sources. We use polarimetric data of the magnetic white dwarf REJ0317853{RE J0317-853} to set strong constraints on the essential coupling constant for this effect, giving k^2 \lsim (19 {m})^2 .Comment: Statements about Moffat's NGT modified. Accepted for publication in Phys.Rev.

    On Doppler tracking in cosmological spacetimes

    Get PDF
    We give a rigorous derivation of the general-relativistic formula for the two-way Doppler tracking of a spacecraft in Friedmann-Lemaitre-Robertson-Walker and in McVittie spacetimes. The leading order corrections of the so-determined acceleration to the Newtonian acceleration are due to special-relativistic effects and cosmological expansion. The latter, although linear in the Hubble constant, is negligible in typical applications within the Solar System.Comment: 10 pages, 1 figure. Journal versio

    Strong-Coupling Expansion for the Hubbard Model

    Full text link
    A strong-coupling expansion for models of correlated electrons in any dimension is presented. The method is applied to the Hubbard model in dd dimensions and compared with numerical results in d=1d=1. Third order expansion of the Green function suffices to exhibit both the Mott metal-insulator transition and a low-temperature regime where antiferromagnetic correlations are strong. It is predicted that some of the weak photoemission signals observed in one-dimensional systems such as SrCuO2SrCuO_2 should become stronger as temperature increases away from the spin-charge separated state.Comment: 4 pages, RevTex, 3 epsf figures include
    corecore