802 research outputs found

    Nuclear recoil measurements in Superheated Superconducting Granule detectors

    Full text link
    The response of Superheated Superconducting Granule (SSG) devices to nuclear recoils has been explored by irradiating SSG detectors with a 70Me ⁣\!V neutron beam. In the past we have tested Al SSG and more recently, measurements have been performed with Sn and Zn detectors. The aim of the experiments was to test the sensitivity of SSG detectors to recoil energies down to a few ke ⁣\!V. In this paper, the preliminary results of the neutron irradiation of a SSG detector made of Sn granules 15-20μ\mum in diameter will be discussed. For the first time, recoil energy thresholds of \sim1ke ⁣\!V have been measured.Comment: 7pages in Latex format, Preprint Bu-He 93/6 (University of Berne, Switzerland), four figures available upon request via [email protected] or [email protected]

    Stable quark stars beyond neutran stars : can they account for the missing matter ?

    Get PDF
    The structure of a spherically symmetric stable dark 'star' is discussed, at zero temperature, containing 1) a core of quarks in the deconfined phase and antileptons 2) a shell of hadrons in particular nn, pp, Λ\Lambda and Σ\Sigma^- and leptons or antileptons and 3) a shell of hydrogen in the superfluid phase. If the superfluid hydrogen phase goes over into the electromagnetic plasma phase at densities well below one atom / (10fm)3(10 fm)^{3}, as is usually assumed, the hydrogen shell is insignificant for the mass and the radius of the 'star'. These quantities are then determined approximatively : mass = 1.8 solar masses and radius = 9.2 km. On the contrary if densities of the order of one atom / (10fm)3(10 fm)^{3} do form a stable hydrogen superfluid phase, we find a large range of possible masses from 1.8 to 375 solar masses. The radii vary accordingly from 9 to 1200 km.Comment: 5 pages, 2 figures, contribution to Strange Quark Matter conference, Frankfurt, Germany, Sept. 200

    Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)

    Get PDF
    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. Together with previous data taking at a rigidity of -20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3 without centrality requirements. We measured nuclei and antinuclei (p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei are mainly produced via the coalescence mechanism. However the centrality dependence of the antibaryon to baryon ratios show that antibaryons are diminished due to annihilation and breakup reactions in the hadron dense environment. The volume of the particle source extracted from coalescence models agrees with results from pion interferometry for an expanding source. The chemical and thermal freeze-out of nuclei and antinuclei appear to coincide with each other and with the thermal freeze-out of hadrons.Comment: 12 pages, 8 figures, to appear in the proceedings of the conference on 'Fundamental Issues in Elementary Matter' Bad Honnef, Germany, Sept. 25-29, 200

    Strangelet spectra from type II supernovae

    Get PDF
    We study in this work the fate of strangelets injected as a contamination in the tail of a "strange matter-driven" supernova shock. A simple model for the fragmentation and braking of the strangelets when they pass through the expanding oxygen shell is presented and solved to understand the reprocessing of this component. We find that the escaping spectrum is a scaled-down version of the one injected at the base of the oxygen shell. The supernova source is likely to produce low-energy particles of A1001000A \sim 100-1000 quite independently of the initial conditions. However, it is difficult that ultrarrelativistic strangelets (such as the hypothetical Centauro primaries) can have an origin in those explosive events.Comment: RevTex file, 5 pp., no figure

    High-speed analysis of nuclear emulsion films with the use of dry objective lenses

    Get PDF
    The extensive use of nuclear emulsions as precise tracking detectors in experimental physics has been made possible due to recent advances in the production of novel emulsion films and to the development of automatic scanning devices. The scanning speed of such systems has exceeded the level of 20 cm2 of emulsion surface per hour. High-speed automatic scanning systems, such as those developed by the OPERA Collaboration, are able to reconstruct particle tracks in nuclear emulsions with excellent accuracy. However, the high-magnification oil immersion objectives used in these systems assume deposition and removal of oil onto and from the emulsion films. This is a major technological obstacle in the automatization of the emulsion feeding to the microscope, as required for large scale use as in the case of the OPERA neutrino oscillation experiment. In order to overcome this problem, an innovative technique of nuclear emulsion films scanning with the use of dry objective lenses has been developed and successfully applied to the experiment

    Centrality dependence of K+ produced in Pb+Pb collisions at 158 GeV per nucleon

    Get PDF
    The NA52 collaboration searches for a discontinuous behaviour of charged kaons produced in Pb+Pb collisions at 158 A GeV as a function of the impact parameter, which could reveal a hadron to quark-gluon plasma (QGP) phase transition. The K+ yield is found to grow proportional to the number of participating ('wounded') nucleons N, above N=100. Previous NA52 data agree with the above finding and show a discontinuous behaviour in the kaon centrality dependence near N=100, marking the onset of strangeness enhancement -over e.g. p+A data at the same \sqrt{s}- in a chemically equilibrated phase.Comment: 2 pages, 2 figures, submitted to the XXXth International Conference on High Energy Physics, 27 July - 2 August, 2000, Osaka, Japa

    Charged pion production in fixed target Pb + Pb collisions at 158 GeV per nucleon

    Get PDF
    Changes in pion production as a function of the impact parameter of the collision or the incident energy, may reveal characteristics of a possible first-order phase transition from nuclear to quark matter, as predicted by lattice quantum chromodynamics. In this paper we investigate charged pion production in Pb+Pb collisions at 158 GeV/nucleon near 0° production angle and at forward rapidity (4.3y6.3)(4.3\leq y \leq 6.3). The centrality dependence of pion production is shown in the impact parameter range ~ 2-12 fm at the rapidities y = 5.7 and 6.3. An enhancement in the pi-/pi+ ratio has been measured near beam rapidity, indicating Coulomb interaction of charged pions with the spectator protons. The charged pion yield per nucleon participating in the collision (N_p) at y = 5.7 increases faster than linearly with N_p, up to N_p~100 and then it saturates, while at y = 6.3 it does not exhibit any sudden change as a function of N_p

    Evidence for νμντ\nu_\mu \to \nu_\tau appearance in the CNGS neutrino beam with the OPERA experiment

    Full text link
    The OPERA experiment is designed to search for νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations in appearance mode i.e. through the direct observation of the τ\tau lepton in ντ\nu_{\tau} charged current interactions. The experiment has taken data for five years, since 2008, with the CERN Neutrino to Gran Sasso beam. Previously, two ντ\nu_{\tau} candidates with a τ\tau decaying into hadrons were observed in a sub-sample of data of the 2008-2011 runs. Here we report the observation of a third ντ\nu_\tau candidate in the τμ\tau^-\to\mu^- decay channel coming from the analysis of a sub-sample of the 2012 run. Taking into account the estimated background, the absence of νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations is excluded at the 3.4 σ\sigma level.Comment: 9 pages, 5 figures, 1 table

    Emulsion sheet doublets as interface trackers for the OPERA experiment

    Get PDF
    New methods for efficient and unambiguous interconnection between electronic counters and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment, that aims at detecting oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector, on-site large-scale treatments of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd) packages, each made of a doublet of emulsion films, have been designed, assembled and coupled to the OPERA target units ("ECC bricks"). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronically tagged penetrating muons. Further improvement of in-doublet film alignment was obtained by matching the pattern of low-energy electron tracks. The commissioning of the overall OPERA alignment procedure is in progress.Comment: 19 pages, 19 figure
    corecore