3,848 research outputs found

    Analysis of Dislocation Mechanism for Melting of Elements: Pressure Dependence

    Full text link
    In the framework of melting as a dislocation-mediated phase transition we derive an equation for the pressure dependence of the melting temperatures of the elements valid up to pressures of order their ambient bulk moduli. Melting curves are calculated for Al, Mg, Ni, Pb, the iron group (Fe, Ru, Os), the chromium group (Cr, Mo, W), the copper group (Cu, Ag, Au), noble gases (Ne, Ar, Kr, Xe, Rn), and six actinides (Am, Cm, Np, Pa, Th, U). These calculated melting curves are in good agreement with existing data. We also discuss the apparent equivalence of our melting relation and the Lindemann criterion, and the lack of the rigorous proof of their equivalence. We show that the would-be mathematical equivalence of both formulas must manifest itself in a new relation between the Gr\"{u}neisen constant, bulk and shear moduli, and the pressure derivative of the shear modulus.Comment: 19 pages, LaTeX, 9 eps figure

    41Ca in tooth enamel. part I: A biological signature of neutron exposure in atomic bomb survivors

    Get PDF
    The detection of 41Ca atoms in tooth enamel using accelerator mass spectrometry is suggested as a method capable of reconstructing thermal neutron exposures from atomic bomb survivors in Hiroshima and Nagasaki. In general, 41Ca atoms are produced via thermal neutron capture by stable 40Ca. Thus any 41Ca atoms present in the tooth enamel of the survivors would be due to neutron exposure from both natural sources and radiation from the bomb. Tooth samples from five survivors in a control group with negligible neutron exposure were used to investigate the natural 41Ca content in tooth enamel, and 16 tooth samples from 13 survivors were used to estimate bomb-related neutron exposure. The results showed that the mean 41Ca/Ca isotope ratio was (0.17 ± 0.05) × 10-14 in the control samples and increased to 2 × 10-14 for survivors who were proximally exposed to the bomb. The 41Ca/Ca ratios showed an inverse correlation with distance from the hypocenter at the time of the bombing, similar to values that have been derived from theoretical free-in-air thermal-neutron transport calculations. Given that γ-ray doses were determined earlier for the same tooth samples by means of electron spin resonance (ESR, or electron paramagnetic resonance, EPR), these results can serve to validate neutron exposures that were calculated individually for the survivors but that had to incorporate a number of assumptions (e.g. shielding conditions for the survivors).Fil: Wallner, A.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; Alemania. Universidad de Viena; AustriaFil: Ruhm, W.. Helmholtz Center Munich German Research Center For Environmental Health; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Rugel, G.. Ludwig Maximilians Universitat; Alemania. Universitat Technical Zu Munich; AlemaniaFil: Nakamura, N.. Radiation Effects Research Foundation; JapónFil: Arazi, Andres. Universitat Technical Zu Munich; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Faestermann, T.. Universitat Technical Zu Munich; AlemaniaFil: Knie, K.. Universitat Technical Zu Munich; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Maier, H. J.. Ludwig Maximilians Universitat; AlemaniaFil: Korschinek, G.. Universitat Technical Zu Munich; Alemani

    Bolometric technique for high-resolution broadband microwave spectroscopy of ultra-low-loss samples

    Full text link
    A novel low temperature bolometric method has been devised and implemented for high-precision measurements of the microwave surface resistance of small single-crystal platelet samples having very low absorption, as a continuous function of frequency. The key to the success of this non-resonant method is the in-situ use of a normal metal reference sample that calibrates the absolute rf field strength. The sample temperature can be controlled independently of the 1.2 K liquid helium bath, allowing for measurements of the temperature evolution of the absorption. However, the instrument's sensitivity decreases at higher temperatures, placing a limit on the useful temperature range. Using this method, the minimum detectable power at 1.3 K is 1.5 pW, corresponding to a surface resistance sensitivity of \approx1 μΩ\mu\Omega for a typical 1 mm×\times1 mm platelet sample.Comment: 13 pages, 12 figures, submitted to Review of Scientific Instrument

    Ferromagnetic redshift of the optical gap in GdN

    Full text link
    We report measurements of the optical gap in a GdN film at temperatures from 300 to 6K, covering both the paramagnetic and ferromagnetic phases. The gap is 1.31eV in the paramagnetic phase and red-shifts to 0.9eV in the spin-split bands below the Curie temperature. The paramagnetic gap is larger than was suggested by very early experiments, and has permitted us to refine a (LSDA+U)-computed band structure. The band structure was computed in the full translation symmetry of the ferromagnetic ground state, assigning the paramagnetic-state gap as the average of the majority- and minority-spin gaps in the ferromagnetic state. That procedure has been further tested by a band structure in a 32-atom supercell with randomly-oriented spins. After fitting only the paramagnetic gap the refined band structure then reproduces our measured gaps in both phases by direct transitions at the X point.Comment: 5 pages, 4 figure

    A Research-Based Curriculum for Teaching the Photoelectric Effect

    Get PDF
    Physics faculty consider the photoelectric effect important, but many erroneously believe it is easy for students to understand. We have developed curriculum on this topic including an interactive computer simulation, interactive lectures with peer instruction, and conceptual and mathematical homework problems. Our curriculum addresses established student difficulties and is designed to achieve two learning goals, for students to be able to (1) correctly predict the results of photoelectric effect experiments, and (2) describe how these results lead to the photon model of light. We designed two exam questions to test these learning goals. Our instruction leads to better student mastery of the first goal than either traditional instruction or previous reformed instruction, with approximately 85% of students correctly predicting the results of changes to the experimental conditions. On the question designed to test the second goal, most students are able to correctly state both the observations made in the photoelectric effect experiment and the inferences that can be made from these observations, but are less successful in drawing a clear logical connection between the observations and inferences. This is likely a symptom of a more general lack of the reasoning skills to logically draw inferences from observations.Comment: submitted to American Journal of Physic

    Space VLBI at Low Frequencies

    Full text link
    At sufficiently low frequencies, no ground-based radio array will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lowest radio frequencies. An imaging radio interferometer based on a large number of small, inexpensive satellites would be able to track solar radio bursts associated with coronal mass ejections out to the distance of Earth, determine the frequency and duration of early epochs of nonthermal activity in galaxies, and provide unique information about the interstellar medium. This would be a "space-space" VLBI mission, as only baselines between satellites would be used. Angular resolution would be limited only by interstellar and interplanetary scattering.Comment: To appear in "Astrophysical Phenomena Revealed by Space VLBI", ed. H. Hirabayashi, P. Edwards, and D. Murphy (ISAS, Japan

    Introduction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69081/2/10.1177_0261927X99018001001.pd

    Distant field BHB stars and the mass of the Galaxy II: Photometry and spectroscopy of UKST candidates 16<B<19.5, 11<R<52 kpc

    Full text link
    This is the second in a series of papers presenting a new calculation of the mass of the Galaxy based on radial velocities and distances for a sample of faint 16 < B < 21.3 field blue horizontal-branch (BHB) stars. We present accurate BV CCD photometry and spectra for 142 candidate A-type stars selected from ub_jr photometry of UK Schmidt telescope plates in six high-Galactic-latitude fields. Classification of these candidates produces a sample of 60 BHB stars at distances of 11-52 kpc from the Sun (mean 28 kpc), with heliocentric line-of-sight velocities accurate to 15 km/s, and distance errors < 10%. We provide a summary table listing coordinates and velocities of these stars. The measured dispersion of the radial component of the Galactocentric velocity for this sample is 108+-10 km/s, in agreement with a recent study of the distant halo by Sirko and coworkers. Measurements of the Ca II K line indicate that nearly all the stars are metal-poor with a mean [Fe/H] = -1.8 with dispersion 0.5. Subsequent papers will describe a second survey of BHBs to heliocentric distances 70 < R < 125 kpc and present a new estimate of the mass of the Galaxy.Comment: 16 pages, 15 figures. Accepted for publication in MNRA
    corecore