65 research outputs found

    Atomically resolved chemical ordering at the nm-thick TiO precipitate/matrix interface in V-4Ti-4Cr alloy

    Get PDF
    We have used advanced analytical electron microscopy to characterise the local structure and chemistry at the interface between nm-thick TiO precipitates and the V-based matrix in a V-4Ti-4Cr alloy. Our results reveal the presence of an intergrowth between the fcc TiO and bcc vanadium structures, with a repeat lattice distance that equals 2.5 times the vanadium lattice parameter along the c-axis. Our atomic resolution analysis of the interface will impact the mechanistic understanding of its interaction with interstitials and radiation-induced lattice defects, and consequently trigger the development of improved alloy structures with interfaces engineered for enhanced radiation tolerance

    Thermoelectric properties of high quality nanostructured Ge:Mn thin films

    Get PDF
    We report on the elaboration of germanium manganese nanostructured thin films and the measurement of their thermoelectric properties. We investigate the growth of Ge:Mn layers along with a thorough structural characterization of this materials at the nanoscale. The room temperature thermoelectric properties of these layers containing spherical inclusions are discussed regarding their potential as a model of "electron crystal phonon glass material". We show that the thermal conductivity can be decreased by a factor of 30, even if the electronic properties can be conserved as in the bulk. The thermoelectric performance ZT of such material is as high as 0.15 making them a promising thermoelectric p-type material for Ge related application

    Simulated TEM imaging of a heavily irradiated metal

    Full text link
    We recast the Howie-Whelan equations for generating simulated transmission electron microscope (TEM) images, replacing the dependence on local atomic displacements with atomic positions only. This allows very rapid computation of simulated TEM images for arbitrarily complex atomistic configurations of lattice defects and dislocations in the dynamical two beam approximation. Large scale massively-overlapping cascade simulations performed with molecular dynamics, are used to generate representative high-dose nanoscale irradiation damage in tungsten at room temperature, and we compare the simulated TEM images to experimental TEM images with similar irradiation and imaging conditions. The simulated TEM shows 'white-dot' damage in weak-beam dark-field imaging conditions, in line with our experimental observations and as expected from previous studies, and in bright-field conditions a dislocation network is observed. In this work we can also compare the images to the nanoscale lattice defects in the original atomic structures, and find that at high dose the white spots are not only created by small dislocation loops, but rather arise from nanoscale fluctuations in strains around curved sections of dislocation lines

    Electrical and thermal spin accumulation in germanium

    Full text link
    In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions of spin diffusion models. Then by setting a temperature gradient between germanium and the ferromagnet, we create a thermal spin accumulation in germanium without any tunnel charge current. We show that temperature gradients yield larger spin accumulations than pure electrical spin injection but, due to competing microscopic effects, the thermal spin accumulation in germanium remains surprisingly almost unchanged under the application of a gate voltage to the channel.Comment: 7 pages, 3 figure

    Crossover from spin accumulation into interface states to spin injection in the germanium conduction band

    Full text link
    Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. In this letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of nn-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with spin diffusion model. More interestingly, we demonstrate in this regime a significant modulation of the spin signal by spin pumping generated by ferromagnetic resonance and also by applying a back-gate voltage which are clear manifestations of spin current and accumulation in the germanium conduction band.Comment: 5 pages, 4 figure

    Unveiling the atomic position of C in Mn5Ge3 Cx thin films

    Get PDF
    Heavily carbon-doped Mn5Ge3 is a unique compound for spintronics applications as it meets all the requirements for spin injection and detection in group-IV semiconductors. Despite the great improvement of the magnetic properties induced by C incorporation into Mn5Ge3 compounds, very little information is available on its structural properties and the genuine role played by C atoms. In this paper, we have used a combination of advanced techniques to extensively characterize the structural and magnetic properties of Mn5Ge3Cx films grown on Ge(111) by solid phase epitaxy as a function of C concentration. The increase of the Curie temperature induced by C doping up to 435 K is accompanied by a decrease of the out-of-plane c-lattice parameter. The Mn and C chemical environments and positions in the Mn5Ge3 lattice have been thoroughly investigated using x-ray absorption spectroscopy techniques (x-ray absorption near-edge structures and extended x-ray absorption fine structures) and scanning transmission electronic microscopy (STEM) combined to electron energy loss spectroscopy for the chemical analysis. The results have been systematically compared to a variety of structures that were identified as favorable in terms of formation energy by ab initio calculations. For x≤0.5, the C atoms are mainly located in the octahedral voids formed by Mn atoms, which is confirmed by simulations and seen for the first time in real space by STEM. However, the latter reveals an inhomogeneous C incorporation, which is qualitatively correlated to the broad magnetic transition temperature. A higher C concentration leads to the formation of manganese carbide clusters that we identified as Mn23C6. Interestingly, other types of defects, such as interstitial Ge atoms, vacancies of Mn, and their association into line defects have been detected. They take part in the strain relaxation process and are likely to be intimately related to the growth process. This paper provides a complete picture of the structure of Mn5Ge3Cx in thin films grown by solid phase epitaxy, which is essential for optimizing their magnetic properties

    Van der Waals pressure and its effect on trapped interlayer molecules

    Get PDF
    Van der Waals assembly of two-dimensional (2D) crystals continue attract intense interest due to the prospect of designing novel materials with on-demand properties. One of the unique features of this technology is the possibility of trapping molecules or compounds between 2D crystals. The trapped molecules are predicted to experience pressures as high as 1 GPa. Here we report measurements of this interfacial pressure by capturing pressure-sensitive molecules and studying their structural and conformational changes. Pressures of 1.2 +/- 0.3 GPa are found using Raman spectrometry for molecular layers of one nanometer in thickness. We further show that this pressure can induce chemical reactions and several trapped salts or compounds are found to react with water at room temperature, leading to 2D crystals of the corresponding oxides. This pressure and its effect should be taken into account in studies of van der Waals heterostructures and can also be exploited to modify materials confined at the atomic interfaces

    Electrically pumped WSe2-based light-emitting van der Waals heterostructures embedded in monolithic dielectric microcavities

    Get PDF
    Vertical stacking of atomically thin layered materials opens new possibilities for the fabrication of heterostructures with favorable optoelectronic properties. The combination of graphene, hexagonal boron nitride and semiconducting transition metal dichalcogenides allows fabrication of electroluminescence (EL) devices, compatible with a wide range of substrates. Here, we demonstrate a full integration of an electroluminescent van der Waals heterostructure in a monolithic optical microcavity made of two high reflectivity dielectric distributed Bragg reflectors (DBRs). Owing to the presence of graphene and hexagonal boron nitride protecting the WSe2 during the top mirror deposition, we fully preserve the optoelectronic behaviour of the device. Two bright cavity modes appear in the EL spectrum featuring Q-factors of 250 and 580 respectively: the first is attributed directly to the monolayer area, while the second is ascribed to the portion of emission guided outside the WSe2 island. By embedding the EL device inside the microcavity structure, a significant modification of the directionality of the emitted light is achieved, with the peak intensity increasing by nearly two orders of magnitude at the angle of the maximum emission compared with the same EL device without the top DBR. Furthermore, the coupling of the WSe2 EL to the cavity mode with a dispersion allows a tuning of the peak emission wavelength exceeding 35 nm (80 meV) by varying the angle at which the EL is observed from the microcavity. This work provides a route for the development of compact vertical-cavity surface-emitting devices based on van der Waals heterostructures
    corecore