451 research outputs found
Achieving Practical and Accurate Indoor Navigation for People with Visual Impairments
Methods that provide accurate navigation assistance to people with visual impairments often rely on instrumenting the environment with specialized hardware infrastructure. In particular, approaches that use sensor networks of Bluetooth Low Energy (BLE) beacons have been shown to achieve precise localization and accurate guidance while the structural modifications to the environment are kept at minimum. To install navigation infrastructure, however, a number of complex and time-critical activities must be performed. The BLE beacons need to be positioned correctly and samples of Bluetooth signal need to be collected across the whole environment. These tasks are performed by trained personnel and entail costs proportional to the size of the environment that needs to be instrumented.
To reduce the instrumentation costs while maintaining a high accuracy, we improve over a traditional regression-based localization approach by introducing a novel, graph-based localization method using Pedestrian Dead Reckoning (PDR) and particle filter. We then study how the number and density of beacons and Bluetooth samples impact the balance between localization accuracy and set-up cost of the navigation environment. Studies with users show the impact that the increased accuracy has on the usability of our navigation application for the visually impaired
Applying Decision-Theory Framework to Landscape Planning for Biodiversity: Follow-up to Watson et al
Because socioeconomic factors drive conservation planning, we believe that to be relevant to on-the-ground projects, conservation science should be focused more on formulating problems explicitly and showing how the broad variety of decision-making tools can be used to deliver solutions. Conservation biology cannot operate outside the reality of financial limitations
Activity and Process Stability of Purified Green Pepper (Capsicum annuum) Pectin Methylesterase
Pectin methylesterase (PME) from green bell peppers (Capsicum annuum) was extracted and purified by affinity chromatography on a CNBr-Sepharose-PMEI column. A single protein peak with pectin methylesterase activity was observed. For the pepper PME, a biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters for activity and thermostability was performed. The optimum pH for PME activity at 22 °C was 7.5, and its optimum temperature at neutral pH was between 52.5 and 55.0 °C. The purified pepper PME required the presence of 0.13 M NaCl for optimum activity. Isothermal inactivation of purified pepper PME in 20 mM Tris buffer (pH 7.5) could be described by a fractional conversion model for lower temperatures (55?57 °C) and a biphasic model for higher temperatures (58?70 °C). The enzyme showed a stable behavior toward high-pressure/temperature treatments. Keywords: Capsicum annuum; pepper; pectin methylesterase; purification; characterization; thermal and high-pressure stabilit
Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting
Background: The typical mandate in conservation planning is to identify areas that represent biodiversity targets within the smallest possible area of land or sea, despite the fact that area may be a poor surrogate for the cost of many conservation actions. It is also common for priorities for conservation investment to be identified without regard to the particular conservation action that will be implemented. This demonstrates inadequate problem specification and may lead to inefficiency: the cost of alternative conservation actions can differ throughout a landscape, and may result in dissimilar conservation priorities
Ecosystem Services in Conservation Planning: Targeted Benefits vs. Co-Benefits or Costs?
There is growing support for characterizing ecosystem services in order to link conservation and human well-being. However, few studies have explicitly included ecosystem services within systematic conservation planning, and those that have follow two fundamentally different approaches: ecosystem services as intrinsically-important targeted benefits vs. substitutable co-benefits. We present a first comparison of these two approaches in a case study in the Central Interior of British Columbia. We calculated and mapped economic values for carbon storage, timber production, and recreational angling using a geographical information system (GIS). These ‘marginal’ values represent the difference in service-provision between conservation and managed forestry as land uses. We compared two approaches to including ecosystem services in the site-selection software Marxan: as Targeted Benefits, and as Co-Benefits/Costs (in Marxan's cost function); we also compared these approaches with a Hybrid approach (carbon and angling as targeted benefits, timber as an opportunity cost). For this analysis, the Co-Benefit/Cost approach yielded a less costly reserve network than the Hybrid approach (1.6% cheaper). Including timber harvest as an opportunity cost in the cost function resulted in a reserve network that achieved targets equivalently, but at 15% lower total cost. We found counter-intuitive results for conservation: conservation-compatible services (carbon, angling) were positively correlated with each other and biodiversity, whereas the conservation-incompatible service (timber) was negatively correlated with all other networks. Our findings suggest that including ecosystem services within a conservation plan may be most cost-effective when they are represented as substitutable co-benefits/costs, rather than as targeted benefits. By explicitly valuing the costs and benefits associated with services, we may be able to achieve meaningful biodiversity conservation at lower cost and with greater co-benefits
Local biodiversity is higher inside than outside terrestrial protected areas worldwide
Protected areas are widely considered essential for biodiversity conservation. However, few global studies have demonstrated that protection benefits a broad range of species. Using a new global biodiversity database with unprecedented geographic and taxonomic coverage, we compare four biodiversity measures at sites sampled in multiple land uses inside and outside protected areas. Globally, species richness is 10.7% higher and abundance 14.5% higher in samples taken inside protected areas compared to samples taken outside, but neither rarefaction-based richness nor endemicity differ significantly. Importantly, we show that the positive effects of protection are mostly attributable to differences in land use between protected and unprotected sites. Nonetheless, even within some human-dominated land uses, species richness and abundance are higher in protected sites. Our results reinforce the global importance of protected areas but suggest that protection does not consistently benefit species with small ranges or increase the variety of ecological niches
Improving spatial prioritisation for remote marine regions: optimising biodiversity conservation and sustainable development trade-offs
Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia–abiodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation
Women, wellbeing and Wildlife Management Areas in Tanzania
Community-based wildlife management claims pro-poor, gender-sensitive outcomes. However, intersectional political ecology predicts adverse impacts on marginalised people. Our large-scale quantitative approach draws out common patterns and differentiated ways women are affected by Tanzania’s Wildlife Management Areas (WMAs). This first large-scale, rigorous evaluation studies WMA impacts on livelihoods and wellbeing of 937 married women in 42 villages across six WMAs and matched controls in Northern and Southern Tanzania. While WMAs bring community infrastructure benefits, most women have limited political participation, and experience resource use restrictions and fear of wildlife attacks. Wealth and region are important determinants, with the poorest worst impacted
Comparison of Marine Spatial Planning Methods in Madagascar Demonstrates Value of Alternative Approaches
The Government of Madagascar plans to increase marine protected area coverage by over one million hectares. To assist this process, we compare four methods for marine spatial planning of Madagascar's west coast. Input data for each method was drawn from the same variables: fishing pressure, exposure to climate change, and biodiversity (habitats, species distributions, biological richness, and biodiversity value). The first method compares visual color classifications of primary variables, the second uses binary combinations of these variables to produce a categorical classification of management actions, the third is a target-based optimization using Marxan, and the fourth is conservation ranking with Zonation. We present results from each method, and compare the latter three approaches for spatial coverage, biodiversity representation, fishing cost and persistence probability. All results included large areas in the north, central, and southern parts of western Madagascar. Achieving 30% representation targets with Marxan required twice the fish catch loss than the categorical method. The categorical classification and Zonation do not consider targets for conservation features. However, when we reduced Marxan targets to 16.3%, matching the representation level of the “strict protection” class of the categorical result, the methods show similar catch losses. The management category portfolio has complete coverage, and presents several management recommendations including strict protection. Zonation produces rapid conservation rankings across large, diverse datasets. Marxan is useful for identifying strict protected areas that meet representation targets, and minimize exposure probabilities for conservation features at low economic cost. We show that methods based on Zonation and a simple combination of variables can produce results comparable to Marxan for species representation and catch losses, demonstrating the value of comparing alternative approaches during initial stages of the planning process. Choosing an appropriate approach ultimately depends on scientific and political factors including representation targets, likelihood of adoption, and persistence goals
- …