854 research outputs found
A Contingent Valuation Study of Lost Passive Use Values Resulting From the Exxon Valdez Oil Spill
We report on the results of a large-scale contingent valuation (CV) study conducted after the Exxon Valdez oil spill to assess the harm caused by it. Among the issues considered are the design features of the CV survey, its administration to a national sample of U.S. households, estimation of household willingness to pay to prevent another Exxon Valdez type oil spill, and issues related to reliability and validity of the estimates obtained. Events influenced by the study’s release are also briefly discussed.contingent valuation, natural resource damage assessment
Recommended from our members
Ecosystem-scale Selenium Model for the San Francisco Bay-Delta Regional Ecosystem Restoration Implementation Plan
Environmental restoration, regulatory protections, and competing interests for water are changing the balance of selenium (Se) discharges to the San Francisco Bay–Delta Estuary (Bay–Delta). The model for Se described here as part of the Delta Regional Ecosystem Restoration Implementation Plan (DRERIP) draws both from the current state of knowledge of the Bay–Delta and of environmental Se science. It is an ecosystem-scale methodology that is a conceptual and quantitative tool to (1) evaluate implications of Se contamination; (2) better understand protection for fish and aquatic-dependent wildlife; and (3) help evaluate future restoration actions. The model builds from five basic principles that determine ecological risks from Se in aquatic environments: (1) dissolved Se transformation to particulate material Se, which is partly driven by the chemical species of dissolved Se, sets dynamics at the base of the food web; (2) diet drives bioavailability of Se to animals; (3) bioaccumulation differs widely among invertebrates, but not necessarily among fish; (4) ecological risks differ among food webs and predator species; and (5) risk for each predator is driven by a combination of exposures via their specific food web and the species’ inherent sensitivity to Se toxicity. Spatially and temporally matched data sets across media (i.e., water, suspended particulate material, prey, and predator) are needed for initiating modeling and for providing ecologically consistent predictions. The methodology, applied site-specifically to the Bay–Delta, includes use of (1) salinity-specific partitioning factors based on empirical estuary data to quantify the effects of dissolved speciation and phase transformation; (2) species-specific dietary biodynamics to quantify foodweb bioaccumulation; and (3) habitat use and life-cycle data for Bay–Delta predator species to illustrate exposure. Model outcomes show that the north Bay–Delta functions as an efficient biomagnifier of Se in benthic food webs, with the greatest risks to predaceous benthivores occurring under low flow conditions. Improving the characterization of ecological risks from Se in the Bay–Delta will require modernization of the Se database and continuing integration of biogeochemical, ecological, and hydrological dynamics into the model
Review on the science and technology of water desalination by capacitive deionization
Porous carbon electrodes have significant potential for energy-efficient water desalination using a promising technology called Capacitive Deionization (CDI). In CDI, salt ions are removed from brackish water upon applying an electrical voltage difference between two porous electrodes, in which the ions will be temporarily immobilized. These electrodes are made of porous carbons optimized for salt storage capacity and ion and electron transport. We review the science and technology of CDI and describe the range of possible electrode materials and the various approaches to the testing of materials and devices. We summarize the range of options for CDI-designs and possible operational modes, and describe the various theoretical–conceptual approaches to understand the phenomenon of CDI
Recommended from our members
Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice
Over recent decades, a new type of electric energy storage system has emerged with the principle that the electric charge can be stored not only at the interface between the electrode and the electrolyte but also in the bulk electrolyte by redox activities of the electrolyte itself. Those redox electrolytes are promising for non-flow hybrid energy storage systems, or redox electrolyte-aided hybrid energy storage (REHES) systems; particularly, when they are combined with highly porous carbon electrodes. In this review paper, critical design considerations for the REHES systems are discussed as well as the effective electrochemical characterization techniques. Appropriate evaluation of the electrochemical performance is discussed thoroughly, including advanced analytical techniques for the determination of the electrochemical stability of the redox electrolytes and self-discharge rate. Additionally, critical summary tables for the recent progress on REHES systems are provided. Furthermore, the unique synergistic combination of porous carbon materials and redox electrolytes is introduced in terms of the diffusion, adsorption, and electrochemical kinetics modulating energy storage in REHES systems. © 2018 The Author(s
Fabrication of bismuth nanowires with a silver nanocrystal shadowmask
We fabricated bismuth (Bi) nanowires with low energy electron beam lithography using silver (Ag) nanocrystal shadowmasks and a subsequent chlorine reactive ion etching. Submicron-size metal contacts on the single Bi nanowire were successfully prepared by in situ focused ion beam metal deposition for transport measurements. The temperature dependent resistance measurements on the 50 nm wide Bi nanowires showed that the resistance increased with decreasing temperature, which is characteristic of semiconductors and insulators
Degradation analysis of tribologically loaded carbon nanotubes and carbon onions
Coating laser-patterned stainless-steel surfaces with carbon nanotubes (CNT) or carbon onions (CO) forms a tribological system that
provides effective solid lubrication. Lubricant retention represents the fundamental mechanism of this system, as storing the
particles inside the pattern prevents lubricant depletion in the contact area. In previous works, we used direct laser interference
patterning to create line patterns with three different structural depths on AISI 304 stainless-steel platelets. Electrophoretic
deposition subsequently coated the patterned surfaces with either CNTs or COs. Ball-on-disc friction tests were conducted to study
the effect of structural depth on the solid lubricity of as-described surfaces. The results demonstrated that the shallower the
textures, the lower the coefficient of friction, regardless of the applied particle type. This follow-up study examines the carbon
nanoparticles’ structural degradation after friction testing on substrates patterned with different structural depths (0.24, 0.36, and
0.77 µm). Raman characterization shows severe degradation of both particle types and is used to classify their degradation state
within Ferrari’s three-stage amorphization model. It was further shown that improving CNT lubricity translates into increasing
particle defectivity. This is confirmed by electron microscopy, which shows decreasing crystalline domains. Compared to CNTs, COderived tribofilms show even more substantial structural degradation
Palladium-catalysed synthesis of arylnaphthoquinones as antiprotozoal and antimycobacterial agents
Malaria and tuberculosis are still among the leading causes of death in low-income countries. The 1,4-naphthoquinone (NQ) scaffold can be found in a variety of anti-infective agents. Herein, we report an optimised, high yield process for the preparation of various 2-arylnaphthoquinones by a palladium-catalysed Suzuki reaction. All synthesised compounds were evaluated for their in-vitro antiprotozoal and antimycobacterial activity. Antiprotozoal activity was assessed against Plasmodium falciparum (P.f.) NF54 and Trypanosoma brucei rhodesiense (T.b.r.) STIB900, and antimycobacterial activity against Mycobacterium smegmatis (M.s.) mc(2) 155. Substitution with pyridine and pyrimidine rings significantly increased antiplasmodial potency of our compounds. The 2-aryl-NQs exhibited trypanocidal activity in the nM range with a very favourable selectivity profile. (Pseudo)halogenated aryl-NQs were found to have a pronounced effect indicating inhibition of mycobacterial efflux pumps. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. In addition, the physicochemical parameters of the synthesised compounds were discussed
Epicatechins Purified from Green Tea (Camellia sinensis) Differentially Suppress Growth of Gender-Dependent Human Cancer Cell Lines
The anticancer potential of catechins derived from green tea is not well understood, in part because catechin-related growth suppression and/or apoptosis appears to vary with the type and stage of malignancy as well as with the type of catechin. This in vitro study examined the biological effects of epicatechin (EC), epigallocatechin (EGC), EC 3-gallate (ECG) and EGC 3-gallate (EGCG) in cell lines from human gender-specific cancers. Cell lines developed from organ-confined (HH870) and metastatic (DU145) prostate cancer, and from moderately (HH450) and poorly differentiated (HH639) epithelial ovarian cancer were grown with or without EC, EGC, ECG or EGCG. When untreated cells reached confluency, viability and doubling time were measured for treated and untreated cells. Whereas EC treatment reduced proliferation of HH639 cells by 50%, EGCG suppressed proliferation of all cell lines by 50%. ECG was even more potent: it inhibited DU145, HH870, HH450 and HH639 cells at concentrations of 24, 27, 29 and 30 µM, whereas EGCG inhibited DU145, HH870, HH450 and HH639 cells at concentrations 89, 45, 62 and 42 µM. When compared with EGCG, ECG more effectively suppresses the growth of prostate cancer and epithelial ovarian cancer cell lines derived from tumors of patients with different stages of disease
- …