9,456 research outputs found

    The PSCz Galaxy Power Spectrum Compared to N-Body Simulations

    Get PDF
    By comparing the PSCz galaxy power spectrum with haloes from nested and phased N-body simulations, we try to understand how IRAS infrared-selected galaxies populate dark-matter haloes. We pay special attention to the way we identify haloes in the simulations.Comment: 2 pages, 1 figure, to appear in "The IGM/Galaxy Connection: The Distribution of Baryons at z=0," eds. J.L. Rosenberg and M.E. Putma

    Relaxation to quantum equilibrium for Dirac fermions in the de Broglie-Bohm pilot-wave theory

    Full text link
    Numerical simulations indicate that the Born rule does not need to be postulated in the de Broglie-Bohm pilot-wave theory, but arises dynamically (relaxation to quantum equilibrium). These simulations were done for a particle in a two-dimensional box whose wave-function obeys the non-relativistic Schroedinger equation and is therefore scalar. The chaotic nature of the de Broglie-Bohm trajectories, thanks to the nodes of the wave-function which act as vortices, is crucial for a fast relaxation to quantum equilibrium. For spinors, we typically do not expect any node. However, in the case of the Dirac equation, the de Broglie-Bohm velocity field has vorticity even in the absence of nodes. This observation raises the question of the origin of relaxation to quantum equilibrium for fermions. In this article, we provide numerical evidence to show that Dirac particles also undergo relaxation, by simulating the evolution of various non-equilibrium distributions for two-dimensional systems (the 2D Dirac oscillator and the Dirac particle in a spherical 2D box).Comment: 11 pages, 9 figure

    The motion of the freely falling chain tip

    Get PDF
    The dynamics of the tip of the falling chain is analyzed. Results of laboratory experiments are presented and compared with results of numerical simulations. Time dependences of the velocity and the acceleration of the chain tip for a number of different initial conformations of the chain are determined. A simple analytical model of the system is also considered.Comment: 29 pages, 13 figure

    Nonequilibrium dynamics in the O(N) model to next-to-next-to-leading order in the 1/N expansion

    Get PDF
    Nonequilibrium dynamics in quantum field theory has been studied extensively using truncations of the 2PI effective action. Both 1/N and loop expansions beyond leading order show remarkable improvement when compared to mean-field approximations. However, in truncations used so far, only the leading-order parts of the self energy responsible for memory loss, damping and equilibration are included, which makes it difficult to discuss convergence systematically. For that reason we derive the real and causal evolution equations for an O(N) model to next-to-next-to-leading order in the 2PI-1/N expansion. Due to the appearance of internal vertices the resulting equations appear intractable for a full-fledged 3+1 dimensional field theory. Instead, we solve the closely related three-loop approximation in the auxiliary-field formalism numerically in 0+1 dimensions (quantum mechanics) and compare to previous approximations and the exact numerical solution of the Schroedinger equation.Comment: 29 pages, minor changes, references added; to appear in PR

    Thermodynamics of the Antiferromagnetic Heisenberg Model on the Checkerboard Lattice

    Full text link
    Employing numerical linked-cluster expansions (NLCEs) along with exact diagonalizations of finite clusters with periodic boundary condition, we study the energy, specific heat, entropy, and various susceptibilities of the antiferromagnetic Heisenberg model on the checkerboard lattice. NLCEs, combined with extrapolation techniques, allow us to access temperatures much lower than those accessible to exact diagonalization and other series expansions. We find that the high-temperature peak in specific heat decreases as the frustration increases, consistent with the large amount of unquenched entropy in the region around maximum classical frustration, where the nearest-neighbor and next-nearest neighbor exchange interactions (J and J', respectively) have the same strength, and with the formation of a second peak at lower temperatures. The staggered susceptibility shows a change of character when J' increases beyond 0.75J, implying the disappearance of the long-range antiferromagnetic order at zero temperature. For J'=4J, in the limit of weakly coupled crossed chains, we find large susceptibilities for stripe and Neel order with Q=(pi/2,pi/2) at low temperatures with antiferromagnetic correlations along the chains. Other magnetic and bond orderings, such as a plaquette valence-bond solid and a crossed-dimer order suggested by previous studies, have also been investigated.Comment: 10 pages, 13 figure

    A variance-minimization scheme for optimizing Jastrow factors

    Get PDF
    We describe a new scheme for optimizing many-electron trial wave functions by minimizing the unreweighted variance of the energy using stochastic integration and correlated-sampling techniques. The scheme is restricted to parameters that are linear in the exponent of a Jastrow correlation factor, which are the most important parameters in the wave functions we use. The scheme is highly efficient and allows us to investigate the parameter space more closely than has been possible before. We search for multiple minima of the variance in the parameter space and compare the wave functions obtained using reweighted and unreweighted variance minimization.Comment: 19 pages; 12 figure

    Massive scalar field instability in Kerr spacetime

    Full text link
    We study the Klein-Gordon equation for a massive scalar field in Kerr spacetime in the time-domain. We demonstrate that under conditions of super-radiance, the scalar field becomes unstable and its amplitude grows without bound. We also estimate the growth rate of this instability.Comment: 10 pages, 5 figure

    Non-white frequency noise in spin torque oscillators and its effect on spectral linewidth

    Full text link
    We measure the power spectral density of frequency fluctuations in nanocontact spin torque oscillators over time scales up to 50 ms. We use a mixer to convert oscillator signals ranging from 10 GHz to 40 GHz into a band near 70 MHz before digitizing the time domain waveform. We analyze the waveform using both zero crossing time stamps and a sliding Fourier transform, discuss the different limitations and advantages of these two methods, and combine them to obtain a frequency noise spectrum spanning more than five decades of Fourier frequency ff. For devices having a free layer consisting of either a single Ni80_{\text{}80}Fe20_{\text{}20} layer or a Co/Ni multilayer we find a frequency noise spectrum that is white at large ff and varies as \emph{1/f1/f} at small ff. The crossover frequency ranges from \approx\unit[10^{4}]{Hz} to \approx\unit[10^{6}]{Hz} and the 1/f1/f component is stronger in the multilayer devices. Through actual and simulated spectrum analyzer measurements, we show that 1/f1/f frequency noise causes both broadening and a change in shape of the oscillator's spectral line as measurement time increases. Our results indicate that the long term stability of spin torque oscillators cannot be accurately predicted from models based on thermal (white) noise sources

    Fluids confined in wedges and by edges: Virial series for the line-thermodynamic properties of hard spheres

    Get PDF
    This work is devoted to analyze the relation between the thermodynamic properties of a confined fluid and the shape of its confining vessel. Recently, new insights in this topic were found through the study of cluster integrals for inhomogeneous fluids that revealed the dependence on the vessel shape of the low density behavior of the system. Here, the statistical mechanics and thermodynamics of fluids confined in wedges or by edges is revisited, focusing on their cluster integrals. In particular, the well known hard sphere fluid, which was not studied in this framework so far, is analyzed under confinement and its thermodynamic properties are analytically studied up to order two in the density. Furthermore, the analysis is extended to the confinement produced by a corrugated wall. These results rely on the obtained analytic expression for the second cluster integral of the confined hard sphere system as a function of the opening dihedral angle 0 < β < 2π. It enables a unified approach to both wedges and edges.Fil: Urrutia, Ignacio. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Thermal metal-insulator transition in a helical topological superconductor

    Get PDF
    Two-dimensional superconductors with time-reversal symmetry have a Z_2 topological invariant, that distinguishes phases with and without helical Majorana edge states. We study the topological phase transition in a class-DIII network model, and show that it is associated with a metal-insulator transition for the thermal conductance of the helical superconductor. The localization length diverges at the transition with critical exponent nu approx 2.0, about twice the known value in a chiral superconductor.Comment: 9 pages, 8 figures, 3 table
    • …
    corecore