279 research outputs found

    Modulated magnetic structure of Fe3PO7 as seen by 57Fe M\"ossbauer spectroscopy

    Full text link
    The paper reports new results of the 57Fe M\"ossbauer measurements on Fe3PO4O3 powder sample recorded at various temperatures including the point of magnetic phase transition TN ~ 163K. The spectra measured above TN consist of quadrupole doublet with high quadrupole splitting of D300K ~ 1.10 mm/s, emphasizing that Fe3+ ions are located in crystal positions with a strong electric field gradient (EFG). In order to predict the sign and orientation of the main components of the EFG tensor we calculated monopole lattice contributions to the EFG. In the temperature range T < TN, the experimental spectra were fitted assuming that the electric hyperfine interactions are modulated when the Fe3+ spin (S) rotates with respect to the EFG axis and emergence of spatial anisotropy of the hyperfine field Hhf = S\~AI at 57Fe nuclei. These data were analyzed to estimate the components of the anisotropic hyperfine coupling tensor (\~A). The large anharmonicity parameter, m ~ 0.94, of the spiral spin structure results from easy-axis anisotropy in the plane of the iron spin rotation. The temperature evolution of the hyperfine field Hhf(T) was described by Bean-Rodbell model that takes into account that the exchange magnetic interactions are strong function of the lattice spacing. The obtained M\"ossbauer data are in qualitative agreement with previous neutron diffraction data for a modulated helical magnetic structure in strongly frustrated Fe3PO4O3.Comment: 24 pages, 9 figure

    Reforming Local Government in Ukraine

    Get PDF
    This White Paper was prepared under the “Public Consultations and Public Awareness Campaign on Local Government Reform in Ukraine—Phase 2” project undertaken jointly by the International Centre for Policy Studies (ICPS) and the Center for Ukrainian Reform Education (CURE) with funding from the Westminster Foundation for Democracy

    Structural, magnetic and magnetoelectric studies of BaTiO3:Co nanocomposite films formed by ion-beam methods

    Get PDF
    Thin-film samples of ferroelectric barium titanate (BaTiO3) with cobalt nanoparticles were obtained by using either ion implantation or ion beam sputtering deposition (IBSD) techniques. The samples were characterized using X-ray diffraction, transmission electron microscopy, magnetometry and ferromagnetic resonance to investigate the efficiency of above ion-beam methods in the synthesis of magnetoelectric nanocomposite materials. Our structural studies show that high-fluence implantation with Co+ ions results in the formation of cobalt nanoparticles with mean size of 5 nm in thin surface layer of monocrystalline plate of BaTiO3. On the other hand, larger nanoparticles of cobalt with sizes from 5 up to 40 nm are formed in polycrystalline BaTiO3 matrix only after high-temperature annealing of BaTiO3:Co composite film prepared by IBSD method. Both types of thin-film nanocomposite samples have similar magnetic hysteresis curves in the sample plane. However Co-implanted BaTiO3 reveals strong uniaxial magnetic anisotropy for out-of-plane orientation, while BaTiO3:Co nanocomposite film demonstrates almost isotropic magnetic response. Strong magnetoelectric effect are observed in Co-implanted BaTiO3, and no magnetoelectric coupling are detected in BaTiO3:Co nanocomposite film formed by IBSD with subsequent high-temperature annealing. © 2014 Elsevier B.V. All rights reserved

    Synthesis and Characterization of Sodium-Iron Antimonate Na2FeSbO5: One-Dimensional Antiferromagnetic Chain Compound with a Spin-Glass Ground State

    Get PDF
    A new oxide, sodium-iron antimonate, Na2FeSbO5, was synthesized and structurally characterized, and its static and dynamic magnetic properties were comprehensively studied both experimentally by dc and ac magnetic susceptibility, magnetization, specific heat, electron spin resonance (ESR) and Mössbauer measurements, and theoretically by density functional calculations. The resulting single-crystal structure (a = 15.6991(9) Å b = 5.3323 (4) Å c = 10.8875(6) Å S.G. Pbna) consists of edge-shared SbO6 octahedral chains, which alternate with vertex-linked, magnetically active FeO4 tetrahedral chains. The 57Fe Mössbauer spectra confirmed the presence of high-spin Fe3+ (3d5) ions in a distorted tetrahedral oxygen coordination. The magnetic susceptibility and specific heat data show the absence of a long-range magnetic ordering in Na2FeSbO5 down to 2 K, but ac magnetic susceptibility unambigously demonstrates spin-glass-type behavior with a unique two-step freezing at Tf1 ≈ 80 K and Tf2 ≈ 35 K. Magnetic hyperfine splitting of 57Fe Mössbauer spectra was observed below T∗ ≈ 104 K (Tf1 &lt; T*). The spectra just below T∗ (Tf1 &lt; T &lt; T*) exhibit a relaxation behavior caused by critical spin fluctuations, indicating the existence of short-range correlations. The stochastic model of ionic spin relaxation was used to account for the shape of the Mössbauer spectra below the freezing temperature. A complex slow dynamics is further supported by ESR data revealing two different absorption modes presumably related to ordered and disordered segments of spin chains. The data imply a spin-cluster ground state for Na2FeSbO5. © 2019 American Chemical Society

    Supporting Information: Unexpected chain of redox events in co-based Prussian blue analogues

    Get PDF
    Comprehensive characterizing information about the series of materials; crystal, composition, and hyperfine parameters of the 57Fe Mössbauer spectra of samples K2−δMn1–xCox[Fe(CN)6]; SAED and TGA patterns, HAADF-STEM images, ATR–FTIR, 57Fe Mössbauer spectra, and electrochemical galvanostatic profiles of the mentioned series of samples; calculated fit of XAS experiments; and plots of KCMF50 and KCF operando SXRD in a 10–54° 2Θ range (λ = 1.0332 Å).Peer reviewe

    Charge Transfer Reactions

    Full text link
    corecore