69 research outputs found

    Aportación al conocimiento del ciclo biológico de Chromulina nevadensis

    Get PDF
    En este trabajo se amplía y se comenta la descripción de Chromulina nevadensis P.M. Sánchez. El estudio se realiza en una laguna oligotrófica de alta montaña (La Caldera), próxima a la laguna de Aguas Verdes, donde se obtuvo el material para su descripción original.Igualmente realizamos algunas consideraciones sobre el comportamiento mixotrófico de este taxon, ya conocido para otros miembros de las crisofíceas. Para finalizar describimos, por primera vez, la morfología a MEB de su estatosporaIn this paper we present data about enlargement of the original description of Chromulina nevadensis. This study has been carried out on an oligotrophic high mountain lake (La Caldera) close to the lake where it was described (Aguas Verdes). Also we make some consideration about the mixotrophy, a nutritional behavior previously knew for other chrysophyceae taza. Finally we study, by the first time, the morfology of its statospores with SEM

    An evaluation of freshwater monitoring programs in ILTER nodes and mountain national parks: identifying key variables to monitor global change effects

    Get PDF
    Acknowledgements This study was funded by the European Commission, under the LIFE Nature and Biodiversity program, as part of the project LIFE-DIVAQUA (Proyecto LIFE18 NAT/ES/000121). We also like to thank all the Spanish government agencies and research institutions who provided information, answered the questionnaires and participated in the workshop “Synthesis of the monitoring programs of global change in aquatic ecosystems SMNP: Autonomous Organism of National Parks, MAPAMA-Dir. Gral. Agua, Universidad de Granada, Instituto Universitario de Investigación del Agua, (IdeA-UGR), Universidad Politécnica de Madrid, CISE-P.N. Sierra de Guadarrama, Fundación Biodiversidad, CEAB-CSIC, IGME, MNCN-CSIC, Universidad de Córdoba, Universidad de Barcelona and ICTA-UAB. We also like to thank the 28 European Nation Parks who responded our query. The authors finally thank the support provided by Christoph Wohner in the use of the DEIMS-SDR.Electronic supplementary material The online version contains supplementary material available at https://doi.org/10.1007/s10531-022-02466-x.Data Availability The datasets used to review the monitoring programs at the Global scale conducted in the ILTER nodes that are included in Rivers (ILTER-Rivers) or Lakes (ILTER-Lakes) are available at the DEIMS dataset registry (DEIMS-SDR) (for more details see: Wohner et al. 2019; https://deims.org/). The datasets used to review the monitoring programs at the European scale conducted in the EMNP are available by requesting them via email to the corresponding EMNP. The datasets used to review the monitoring programs at the National scale conducted in the five SMNP are mostly included in this article and it supplementary information file. In addition, meteorological data recorded by the Spanish Global Change Monitoring Network in available at the Meteorological data download web application (https://www.miteco.gob.es/es/redparques- nacionales/red-seguimiento/acceso-datos.aspx). Further and more detailed information is available from the corresponding author on reasonable request.Funding This study was carried out with the financial support of the EU LIFE programme, as part of the project LIFE-DIVAQUA (Proyecto LIFE18 NAT/ES/000121). The information showed in this publication only reflects the point of view of the authors. The European Comission and CINEA cannot be held responsible for any use which be made of the information contained here. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Identifying and quantifying global change impacts on biotic and abiotic components of ecosystems is critical to promote an effective adaptation that increases the success of conservation strategies. To achieve this goal, global and regional assessment efforts require certain degree of harmonization on local monitoring programs to establish relevant comparisons at different spatio-temporal scales. Otherwise, the lack of harmonization might hinder the detection and assessment on the effects of human impacts. In this work we have compiled information on freshwater monitoring programs located in areas of intensive research and conservation interest: International Long Term Ecological Research (ILTER) nodes and mountain National Parks. We aimed at evaluating the quality and robustness of these programs to assess the impact of global change, addressing from the worldwide to the European and Spanish national scale. Results highlighted that freshwater monitoring programs lack a common strategy to monitor these ecosystems. Even at the continental and national scales, contrasting strategies and level of detail have been historically applied. Water quality, habitat and biodiversity are more commonly monitored than community structure and ecosystem functioning. Monitoring efforts on the Spanish Mountain National parks indicated differences on the targeted aquatic ecosystems. Rivers and lakes received a higher attention, while mires were rarely considered. Our results provide evidence that greater efforts should be directed towards constructing a coordinated strategy to monitor freshwater ecosystems at national, continental, and global scales. This strategy should involve a shared backbone of biophysical and biogeochemical variables for each habitat type on agreed protocols that are implemented across regions and administrative borders. Achieving this will support a substantial advance on the ecological research to further delineate proper conservation strategies to face the challenges imposed by global change.European Commission LIFE18 NAT/ES/00012

    Uncoupled phytoplanktonbacterioplankton relationship by multiple drivers interacting at diferent temporal scales in a highmountain Mediterranean lake

    Get PDF
    Global-change stressors act under diferent timing, implying complexity and uncertainty in the study of interactive efects of multiple factors on planktonic communities. We manipulated three types of stressors acting in diferent time frames in an in situ experiment: ultraviolet radiation (UVR); phosphorus (P) concentration; temperature (T) in an oligotrophic Mediterranean high-mountain lake. The aim was to examine how the sensitivity of phytoplankton and bacterioplankton to UVR and their trophic relationship change under nutrient acclimation and abrupt temperature shifts. Phytoplankton and bacteria showed a common pattern of metabolic response to UVR× P addition interaction, with an increase in their production rates, although evidencing an inhibitory UVR efect on primary production (PP) but stimulatory on bacterial production (HBP). An abrupt T shift in plankton acclimated to UVR and P addition decreased the values of PP, evidencing an inhibitory UVR efect, whereas warming increased HBP and eliminated the UVR efect. The weakening of commensalistic and predatory relationship between phyto- and bacterioplankton under all experimental conditions denotes the negative efects of present and future global-change conditions on planktonic food webs towards impairing C fux within the microbial loop

    Complex interactions in microbial food webs : stoichiometric and functional approaches

    Get PDF
    The food web structure in some high mountain lakes deviates from the established tendency of high heterotrophic bacteria: phytoplankton biomass ratios in oligotrophic ecosystems. Thus, the microbial food web in La Caldera Lake is weakly developed, and bacteria constitute a minor component of the plankton community in terms of abundance, biomass and production. Autotrophic picoplankton is absent, and heterotrophic microbial food web is weakly developed compared to a grazing chain dominated by calanoid copepods and a phytoplankton community mainly composed of mixotrophic flagellates. In order to explain the singular food web structure of this lake, functional, stoichiometric and taxonomical approaches are followed to assess, on various temporal and spatial scales, the relevance of stressful abiotic factors (ultraviolet solar radiation and P-limitation) on the structure and functioning of this ecosystem. P-availability was the main factor controlling the algal biomass whereas bacterial P- limitation was a transient phenomenon. The algae-bacteria relationship was predominately commensalistic. In contrast to algae, full-sunlight radiation had no negative effect on bacterial growth but rather enhanced bacterial dependence on the carbon released by algae. The prevalence of the commensalistic-mutualistic relationship and the development of a more complex microbial food web were related to the stoichiometry of algae and bacteria (N:P ratios). The microbial food web only developed at balanced algal and bacterial N:P ratios, with the appearance of ciliates after a nutrient pulse. However, mixotrophic algae dominated the planktonic community under P-deficit conditions, and they were the main factor controlling bacterioplankton. Their regulatory effect has a dual nature: (i) a resource-based control, where bacteria depend on the photosynthetic carbon released by algae, i.e., a commensalistic interaction ("without you I cannot live"); and (ii) a predatory control, where bacteria is a prey for mixotrophs ("with you I die"). Hence, the niche of microheterotrophs (nanoflagellates and ciliates) is occupied by mixotrophs, and there is a resulting simplification of the planktonic structure. With respect to the carbon cycle, mixotrophic bacterivory constitutes a "by-pass" for the flux of C towards the grazing chain, precluding the development of a complex heterotrophic microbial food web. Mixotrophs thereby improve the energetic transfer efficiency in high mountain lakes through a reduction in the number of trophic levels. Antagonistic effects of UVR x P interactions on the algae-bacteria relationship were caused by an enhancement of dual (resource and predation) control. Based on these results, an alternative model for the flux of C in autotrophic high mountain lakes has been proposed.La estructura de la red trófica en algunos lagos de alta montaña, se aleja de los patrones establecidos para ecosistemas oligotróficos que proponen el predominio de la red trófica microbiana sobre la cadena de pastoreo. Así, en la laguna de La Caldera las bacterias son el componente minoritario de la comunidad planctónica en términos de abundancia, biomasa y producción. El picoplancton autótrofo está ausente y la red microbiana heterotrófica se encuentra escasamente desarrollada frente a una cadena de pastoreo dominada por copépodos calanoides y algas mixotróficas. Para comprender los mecanismos que determinan esta estructura trófica hemos seguido diferentes aproximaciones de análisis: funcional, estequiométrica y taxonómica sobre distintas escalas espaciales y temporales, en relación con los principales factores de estrés abiótico (radiación ultravioleta y limitación por fósforo) que controlan el funcionamiento de los ecosistemas de alta montaña. Nuestros resultados indican que la disponibilidad de fósforo, de forma generalizada, controla la biomasa algal y de manera transitoria la bacteriana, estableciéndose entre ambas comunidades una relación comensalista. La radiación solar completa no afecta negativamente el desarrollo de las bacterias y si el de las algas y potencia la relación de dependencia por el carbono orgánico (comensalismo) entre algas y bacterias. El predominio de la relación comensalista-mutualista y el desarrollo del bucle microbiano esta relacionado con la estequiometría (razón N:P) de algas y bacterias. Así, sólo cuando la razón N:P de algas y bacterias es equilibrada para crecer, un pulso de nutrientes permite el desarrollo del bucle microbiano. En condiciones naturales de déficit de P, sin embargo, existe un predominio de "algas" con metabolismo mixotrófico. Las algas mixotróficas ejercen un efecto regulador dual sobre las bacterias que denominamos Ni contigo ni sin ti, (i) control por depredación, donde las bacterias son consumidas por algas mixotróficas ("contigo me muero"), (ii) control basado en los recursos estableciéndose una relación de dependencia de las bacterias sobre del carbono liberado por las algas ("sin ti no puedo vivir"). La mixotrofia supone un simplificación en la cadena trófica microbiana, donde los mixótrofos ocupan el nicho potencial de nanoflagelados y ciliados. Desde un punto de vista energético implica un cortocircuito en el flujo de energía y un incremento en la eficiencia de transferencia energética en ecosistemas ultraoligotróficos y con alta dosis de radiación ultravioleta (RUV). Los efectos de la interacción entre RUV y pulsos de P tienen un efecto antagónico sobre la interacción alga-bacteria, intensificando la interacción comensal-depredadora. A partir de los resultados obtenidos proponemos un modelo alternativo de flujo de energía para ecosistemas autotróficos de alta montaña

    Increased nutrients from aeolian-dust and riverine origin decrease the CO2-sink capacity of coastal South Atlantic waters under UVR exposure

    Get PDF
    Increases in ultraviolet radiation (UVR) levels due to the ongoing stratification of water bodies and higher nutrient concentrations either through riverine or aeolian-dust-inputs are expected in the near future in coastal surface waters. Here, we combined remote-sensing data of particulate organic carbon (POC; 1997–2016 period), observational data of solar radiation (1999–2015 period), and a mid-term experimental approach with coastal plankton communities from South Atlantic Ocean (SAO) to test how the interaction between increased nutrients by riverine and aeolian-dust inputs and high UVR may alter the community dynamics and the CO2 sink capacity of these ecosystems in the future. Our results show a decline ∼ 27% in the sink capacity of the coastal ecosystems regardless of the nutrient source considered and under high UVR levels. This decreased CO2 uptake was coupled with a high dynamic photoinhibition and dark recovery of photosystem II and shifts in the community structure toward the dominance by nano-flagellates. Moreover, remote-sensing data also evidences an incipient tipping point with decreasing POC values in this area over the annual planktonic succession. Therefore, we propose that to continue this climate and human-mediated pressure, these metabolic responses could be strengthened and extended to other productive coastal areas.Fil: Cabrerizo, Marco J.. Universidad de Granada; España. Fundación Playa Unión. Estación de Fotobiología Playa Unión; ArgentinaFil: Carrillo, Presentación. Universidad de Granada; EspañaFil: Villafañe, Virginia Estela. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Medina Sánchez, Juan Manuel. Universidad de Granada; EspañaFil: Helbling, Eduardo Walter. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentin

    Multiple interacting environmental drivers reduce the impact of solar UVR on primary productivity in Mediterranean lakes

    Get PDF
    Increases in rainfall, continental runoff, and atmospheric dust deposition are reducing water transparency in lakes worldwide (i.e. higher attenuation Kd). Also, ongoing alterations in multiple environmental drivers due to global change are unpredictably impacting phytoplankton responses and lakes functioning. Although both issues demand urgent research, it remains untested how the interplay between Kd and multiple interacting drivers affect primary productivity (Pc). We manipulated four environmental drivers in an in situ experiment—quality of solar ultraviolet radiation (UVR), nutrient concentration (Nut), CO2 partial pressure (CO2), and light regime (Mix)—to determine how the Pc of nine freshwater phytoplankton communities, found along a Kd gradient in Mediterranean ecosystems, changed as the number of interacting drivers increased. Our findings indicated that UVR was the dominant driver, its effect being between 3–60 times stronger, on average, than that of any other driver tested. Also, UVR had the largest difference in driver magnitude of all the treatments tested. A future UVR × CO2 × Mix × Nut scenario exerted a more inhibitory effect on Pc as the water column became darker. However, the magnitude of this synergistic effect was 40–60% lower than that exerted by double and triple interactions and by UVR acting independently. These results illustrate that although future global-change conditions could reduce Pc in Mediterranean lakes, multiple interacting drivers can temper the impact of a severely detrimental driver (i.e. UVR), particularly as the water column darkensMinisterio de Ciencia, Innovación y Universidades | Ref. FJCI2017-32318Ministerio de Economía y Competitividad | Ref. CGL2015-67682-RMinisterio de Economía y Competitividad | Ref. CGL2011-23681Ministerio de Medio Ambiente y Medio Rural y Marino | Ref. PN2009/067Junta de Andalucía | Ref. P09-RNM-5376Junta de Andalucía | Ref. Excelencia CVI-0259

    Multiple interacting environmental drivers reduce the impact of solar UVR on primary productivity in Mediterranean lakes

    Get PDF
    Increases in rainfall, continental runoff, and atmospheric dust deposition are reducing water transparency in lakes worldwide (i.e. higher attenuation Kd). Also, ongoing alterations in multiple environmental drivers due to global change are unpredictably impacting phytoplankton responses and lakes functioning. Although both issues demand urgent research, it remains untested how the interplay between Kd and multiple interacting drivers affect primary productivity ( Pc). We manipulated four environmental drivers in an in situ experiment—quality of solar ultraviolet radiation (UVR), nutrient concentration (Nut), CO2 partial pressure ( CO2), and light regime (Mix)—to determine how the Pc of nine freshwater phytoplankton communities, found along a Kd gradient in Mediterranean ecosystems, changed as the number of interacting drivers increased. Our findings indicated that UVR was the dominant driver, its effect being between 3–60 times stronger, on average, than that of any other driver tested. Also, UVR had the largest difference in driver magnitude of all the treatments tested. A future UVR × CO2 × Mix × Nut scenario exerted a more inhibitory effect on Pc as the water column became darker. However, the magnitude of this synergistic effect was 40–60% lower than that exerted by double and triple interactions and by UVR acting independently. These results illustrate that although future global-change conditions could reduce Pc in Mediterranean lakes, multiple interacting drivers can temper the impact of a severely detrimental driver (i.e. UVR), particularly as the water column darkens.Ministerio de Economía y Competividad (MINECO)European Union (EU) MICROSENSCGL2011-23681 METAS-CGL2015-67682-RMedio Ambiente, Rural, y Marino PN2009/067Junta de Andalucía CVI-02598 P09-RNM-5376Fundación Playa Unión (Argentina)Juan de la Cierva-Formacion from the Ministerio de Ciencia, Innovación y Universidades FJCI2017-32318Postdoctoral contract "Contrato Puente" from Plan Propio (FP7/2017) of the University of GranadaMETAS projec

    Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems

    Get PDF
    The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.This work was funded by the Ministerio Español de Ciencia e Innovación (CGL2011–23681 and CGL2015-67682-R), and Campus de Excelencia Internacional del Mar (CeiMar). M.J.C. and J.M.G.-O. were supported by the Spanish Government Fellowship “Formación de Profesorado Universitario” (FPU12/01243 and FPU14/00977, respectively)

    Synergistic effects of UVR and simulated stratification on commensalistic phytoplankton–bacteria relationship in two optically contrasting oligotrophic Mediterranean lakes

    Get PDF
    An indirect effect of global warming is a reduction in the depth of the upper mixed layer (UML) causing organisms to be exposed to higher levels of ultraviolet (UVR, 280–400 nm) and photosynthetically active radiation (PAR, 400–700 nm). This can affect primary and bacterial production as well as the commensalistic phytoplankton–bacteria relationship. The combined effects of UVR and reduction in the depth of the UML were assessed on variables related to the metabolism of phytoplankton and bacteria, during in situ experiments performed with natural pico- and nanoplankton communities from two oligotrophic lakes with contrasting UVR transparency (high-UVR versus low-UVR waters) of southern Spain. The negative UVR effects on epilimnetic primary production (PP) and on heterotrophic bacterial production (HBP), intensified under increased stratification, were higher in the low-UVR than in the high-UVR lake, and stronger on the phytoplanktonic than on the heterotrophic bacterial communities. Under UVR and increased stratification, the commensalistic phytoplankton–bacteria relationship was strengthened in the high-UVR lake where excretion of organic carbon (EOC) rates exceeded the bacterial carbon demand (BCD; i.e., BCD : EOC(%) ratio 100). The greater UVR damage to phytoplankton and bacteria and the weakening of their commensalistic interaction found in the low-UVR lake indicates that these ecosystems would be especially vulnerable to UVR and increased stratification as stressors related to global climate change. Thus, our findings may have important implications for the carbon cycle in oligotrophic lakes of the Mediterranean region.This study was supported by the Ministerio Español de Medio Ambiente, Rural y Marino (PN2009/067), Ciencia e Innovación (CGL2011-23681), Junta de Andalucía (Excelencia CVI-02598 and P09-RNM-5376), Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET (PIP no. 112-201001-00228), and Fundación Playa Unión. G. Herrera and C. Durán were supported by a Formación de Profesorado Universitario grant from the Spanish government. The authors are indebted to the staff of Sierra Nevada National Park and Lagunas de Ruidera Natural Park for permission to work, to E. Jiménez-Coll for the bacterial production analysis, and to D. Nesbitt for writing assistance in English

    Eat Well to Fight Obesity… and Save Water: The Water Footprint of Different Diets and Caloric Intake and Its Relationship With Adiposity

    Get PDF
    The authors thank the National Council for Science and Technology (CONACYT) for the scholarship number 717186 (CVU 934420).Water scarcity and excess adiposity are two of the main problems worldwide and in Mexico, which is the most obese country in the world and suffers from water scarcity. Food production represents 90% of a person’s water footprint (WF), and healthy diets can lead to less WF than do unhealthy diets related to obesity. We calculated the WF of the diet and caloric intake of adults in Mexico and analyzed its relationship with adiposity. Also, the risk of water expenditure due to adiposity and adherence to dietary recommendations regarding WF of international healthy diets were examined. A Food Consumption Frequency Questionnaire (FCFQ) was applied to 395 adults. Body mass index (BMI), associated with adiposity indicators, was used as a reference for grouping a sample into adiposity levels. The WF was calculated according to the WF Assessment Method, considering correction factors and accounting for water involved in cooking and food washing. Our results showed that the Mexican diet spends 6,056 liters per person per day (L p−1d−1) and is 55%higher than international healthy diets WF. Consumption of beef, milk, fruits, chicken, and fatty cereals represented 56% of total WF. Strong relations appeared between hypercaloric diets and high WF. Diets of people with excess adiposity generated statistically higher WF with extra expenses of 729 L p−1d−1 compared with the normal adiposity population. Following nutritional recommendations offers a protective factor in water care, whereas not adhering to these represents a risk up to 93 times greater of water expenditure regarding international healthy diets. Therefore, both for the general population and to regulate obesity, adequate diets can help mitigate the problem of water scarcity.Consejo Nacional de Ciencia y Tecnologia (CONACyT) 717186 (CVU 934420
    corecore