99 research outputs found

    Ethnic differences in urinary calcium and phosphate excretion between Gambian and British older adults

    Get PDF
    Summary: Ethnic differences in renal calcium and phosphate excretion exist, which may depend on differences in their dietary intakes and regulatory factors. We report highly significant differences in urinary calcium and phosphate excretion between white British and Gambian adults after statistical adjustment for mineral intakes, indicating an independent effect of ethnicity.  Introduction: Populations vary in their risk of age-related osteoporosis. There are racial or ethnic differences in the metabolism of the bone-forming minerals calcium (Ca) and phosphate (P), with a lower renal Ca and P excretion in African-Americans compared to white counterparts, even at similar intakes and rates of absorption. Also, Africans in The Gambia have a lower Ca excretion compared to white British subjects, groups known to differ in their dietary Ca intake. Here, we report on differences in urinary Ca and P excretion between Gambian and white British adults while allowing for known predictors, including dietary intakes.  Methods: Participants were healthy white British (n = 60) and Gambian (n = 61) men and women aged 60–75 years. Fasting blood and 2-h urine samples were collected. Markers of Ca and P metabolism were analysed. Dietary intake was assessed with country-specific methods.  Results: White British older adults had higher creatinine-corrected urinary Ca and P excretion (uCa/uCr, uP/uCr) and lower tubular maximum of Ca and P compared to Gambian counterparts. The predictors of urinary Ca and P differed between groups. Multiple regression analysis showed that dietary Ca and Ca/P were predictors of uCa/uCr and uP/uCr, respectively. Ethnicity remained a significant predictor of uCa/uCr and uP/uCr after adjustment for diet and other factors.  Conclusions: Gambian older adults have higher renal Ca conservation than British counterparts. Dietary mineral intakes were predictors of the differences in urinary Ca and P excretion, but ethnicity remained a highly significant predictor after statistical adjustment. This suggests that ethnicity has an independent effect on renal Ca and P handling

    Iron Incorporation and Post-Malaria Anaemia

    Get PDF
    BACKGROUND: Iron supplementation is employed to treat post-malarial anaemia in environments where iron deficiency is common. Malaria induces an intense inflammatory reaction that stalls reticulo-endothelial macrophagal iron recycling from haemolysed red blood cells and inhibits oral iron absorption, but the magnitude and duration of these effects are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined the red blood cell incorporation of oral administered stable isotopes of iron and compared incorporation between age matched 18 to 36 months old children with either anaemia post-malaria (n = 37) or presumed iron deficiency anaemia alone (n = 36). All children were supplemented for 30 days with 2 mg/kg elemental iron as liquid iron sulphate and administered (57)Fe and (58)Fe on days 1 and 15 of supplementation respectively. (57)Fe and(58)Fe incorporation were significantly reduced (8% vs. 28%: p<0.001 and 14% vs. 26%: p = 0.045) in the malaria vs. non-malaria groups. There was a significantly greater haemoglobin response in the malaria group at both day 15 (p = 0.001) and 30 (p<0.000) with a regression analysis estimated greater change in haemoglobin of 7.2 g/l (s.e. 2.0) and 10.1 g/l (s.e. 2.5) respectively. CONCLUSION/SIGNIFICANCE: Post-malaria anaemia is associated with a better haemoglobin recovery despite a significant depressant effect on oral iron incorporation which may indicate that early erythropoetic iron need is met by iron recycling rather than oral iron. Supplemental iron administration is of questionable utility within 2 weeks of clinical malaria in children with mild or moderate anaemia

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Ragweed as an Example of Worldwide Allergen Expansion

    Get PDF
    <p/> <p>Multiple factors are contributing to the expansion of ragweed on a worldwide scale. This review seeks to examine factors that may contribute to allergen expansion with reference to ragweed as a well-studied example. It is our hope that increased surveillance for new pollens in areas not previously affected and awareness of the influence the changing environment plays in allergic disease will lead to better outcomes in susceptible patients.</p

    Reconciling carbon-cycle concepts, terminology, and methods

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 9 (2006): 1041-1050, doi:10.1007/s10021-005-0105-7.Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production

    History, epidemiology and regional diversities of urolithiasis

    Get PDF
    Archeological findings give profound evidence that humans have suffered from kidney and bladder stones for centuries. Bladder stones were more prevalent during older ages, but kidney stones became more prevalent during the past 100 years, at least in the more developed countries. Also, treatment options and conservative measures, as well as ‘surgical’ interventions have also been known for a long time. Our current preventive measures are definitively comparable to those of our predecessors. Stone removal, first lithotomy for bladder stones, followed by transurethral methods, was definitively painful and had severe side effects. Then, as now, the incidence of urolithiasis in a given population was dependent on the geographic area, racial distribution, socio-economic status and dietary habits. Changes in the latter factors during the past decades have affected the incidence and also the site and chemical composition of calculi, with calcium oxalate stones being now the most prevalent. Major differences in frequency of other constituents, particularly uric acid and struvite, reflect eating habits and infection risk factors specific to certain populations. Extensive epidemiological observations have emphasized the importance of nutritional factors in the pathogenesis of urolithiasis, and specific dietary advice is, nowadays, often the most appropriate for prevention and treatment of urolithiasis

    Neuroendocrine–immune disequilibrium and endometriosis: an interdisciplinary approach

    Get PDF
    Endometriosis, a chronic disease characterized by endometrial tissue located outside the uterine cavity, affects one fourth of young women and is associated with chronic pelvic pain and infertility. However, an in-depth understanding of the pathophysiology and effective treatment strategies of endometriosis is still largely elusive. Inadequate immune and neuroendocrine responses are significantly involved in the pathophysiology of endometriosis, and key findings are summarized in the present review. We discuss here the role of different immune mechanisms particularly adhesion molecules, protein–glycan interactions, and pro-angiogenic mediators in the development and progression of the disease. Finally, we introduce the concept of endometrial dissemination as result of a neuroendocrine-immune disequilibrium in response to high levels of perceived stress caused by cardinal clinical symptoms of endometriosis

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore