188 research outputs found

    Dams with head increaser effect: Harnessing potential and kinetic power from rivers with large head and flow variation

    Get PDF
    There is an enormous untapped potential for hydropower generation in rivers with large head and high flow variation, currently not feasible for conventional hydropower dams. Conventional dams make use of the potential energy, but waste kinetic energy from spillage during periods of high flows. This article studies the possibility of harnessing energy from potential and kinetic energy from hydropower dams with large head and flow variation, analyses its potential, and shows possible technologies. Focus is given to a Moveable Hydro-Electric Power Plant (HEPP) system in which the turbine module can be adjusted according to the flow and water level in the river. During floods the exceeding flows can pass above and below the Moveable HEPP results in a sub-pressure environment after the turbine module, thereby reducing the dam’s downstream head, increasing the pressure difference between the turbine inlet and outlet and the flow through the turbine, which increases the electricity generation of the dam. Dams with head increaser arrangement have been implemented in several dams in the 1930–1950s and now are regaining attention in Middle Europe. The main intention for its implementation is harnessing hydropower generation at run-of-river plants, with low-head, with a 20%–30% cost reduction, lower flooded area at the dam site, the resulting evaporation and the impact on the aquatic fauna. A case study was performed with the proposal of the Aripuanã Moveable HEPP in the Madeira River with a 26 ms height dam and a generation capacity of 1400 MW. The increase in generation with the head increaser effect is as high as 21%. The estimated potential for this technology in the Amazon region is 20 GW. Other potential locations are discussed in the article. Dams with head increaser effect have been successfully implemented and have the potential to become a major alternative for base load renewable energy in the future

    Peripheral Determinants of Oxygen Utilization in Heart Failure With Preserved Ejection Fraction

    Get PDF
    The aim of this study was to determine the arteriovenous oxygen content difference (ΔAVO2) in adult subjects with and without heart failure with preserved ejection fraction (HFpEF) during systemic and forearm exercise. Subjects with HFpEF had reduced ΔAVO2. Forearm diffusional conductance for oxygen, a lumped conductance parameter that incorporates all impediments to the movement of oxygen from red blood cells in skeletal muscle capillaries into the mitochondria within myocytes, was estimated. Forearm diffusional conductance for oxygen was not different among adults with HFpEF, those with hypertension, and healthy control subjects; therefore, diffusional conductance cannot explain the reduced forearm ΔAVO2. Instead, adiposity was strongly associated with ΔAVO2, suggesting an active role for adipose tissue in reducing exercise capacity in patients with HFpEF

    Phospholipid dependent mechanism of smp24, an α-helical antimicrobial peptide from scorpion venom

    Get PDF
    Determining the mechanism of action of antimicrobial peptides (AMPs) is critical if they are to be developed into the clinical setting. In recent years high resolution techniques such as atomic force microscopy (AFM) have increasingly been utilised to determine AMP mechanism of action on planar lipid bilayers and live bacteria. Here we present the biophysical characterisation of a prototypical AMP from the venom of the North African scorpion Scorpio maurus palmatus termed Smp24. Smp24 is an amphipathic helical peptide containing 24 residues with a charge of + 3 and exhibits both antimicrobial and cytotoxic activity and we aim to elucidate the mechanism of action of this peptide on both membrane systems. Using AFM, quartz crystal microbalance-dissipation (QCM-D) and liposomal leakage assays the effect of Smp24 on prototypical synthetic prokaryotic (DOPG:DOPC) and eukaryotic (DOPE:DOPC) membranes has been determined. Our data points to a toroidal pore mechanism against the prokaryotic like membrane whilst the formation of hexagonal phase non-lamellar phase structures is seen in eukaryotic like membrane. Also, phase segregation is observed against the eukaryotic membrane and this study provides direct evidence of the same peptide having multiple mechanisms of action depending on the membrane lipid composition

    Filling in the gaps of the papilionoid legume phylogeny: The enigmatic Amazonian genus Petaladenium is a new branch of the early-diverging Amburaneae clade

    Get PDF
    Recent deep-level phylogenies of the basal papilionoid legumes (Leguminosae, Papilionoideae) have resolved many clades, yet left the phylogenetic placement of several genera unassessed. The phylogenetically enigmatic Amazonian monospecific genus Petaladenium had been believed to be close to the genera of the Genistoid Ormosieae clade. In this paper we provide the first DNA phylogenetic study of Petaladenium and show it is not part of the large Genistoid clade, but is a new branch of the Amburaneae clade, one of the first-diverging lineages of the Papilionoideae phylogeny. This result is supported by the chemical observation that the quinolizidine alkaloids, a chemical synapomorphy of the Genistoids, are absent in Petaladenium. Parsimony and Bayesian phylogenetic analysis of nuclear ITS/5.8S and plastid matK and trnL intron agree with a new interpretation of morphology that Petaladenium is sister to Dussia, a genus comprising ~18 species of trees largely confined to rainforests in Central America and northern South America. Petaladenium, Dussia, and Myrospermum have papilionate flowers in a clade otherwise with radial floral symmetry, loss of petals or incompletely differentiated petals. Our phylogenetic analyses also revealed well-supported resolution within the three main lineages of the ADA clade (Angylocalyceae, Dipterygeae, and Amburaneae). We also discuss further molecular phylogenetic evidence for the undersampled Amazonian genera Aldina and Monopteryx, and the tropical African Amphimas, Cordyla, Leucomphalos, and Mildbraediodendron. © 2015 Elsevier Inc

    Extent of non-publication in cohorts of studies approved by research ethics committees or included in trial registries

    Get PDF
    BACKGROUND: The synthesis of published research in systematic reviews is essential when providing evidence to inform clinical and health policy decision-making. However, the validity of systematic reviews is threatened if journal publications represent a biased selection of all studies that have been conducted (dissemination bias). To investigate the extent of dissemination bias we conducted a systematic review that determined the proportion of studies published as peer-reviewed journal articles and investigated factors associated with full publication in cohorts of studies (i) approved by research ethics committees (RECs) or (ii) included in trial registries. METHODS AND FINDINGS: Four bibliographic databases were searched for methodological research projects (MRPs) without limitations for publication year, language or study location. The searches were supplemented by handsearching the references of included MRPs. We estimated the proportion of studies published using prediction intervals (PI) and a random effects meta-analysis. Pooled odds ratios (OR) were used to express associations between study characteristics and journal publication. Seventeen MRPs (23 publications) evaluated cohorts of studies approved by RECs; the proportion of published studies had a PI between 22% and 72% and the weighted pooled proportion when combining estimates would be 46.2% (95% CI 40.2%-52.4%, I2 = 94.4%). Twenty-two MRPs (22 publications) evaluated cohorts of studies included in trial registries; the PI of the proportion published ranged from 13% to 90% and the weighted pooled proportion would be 54.2% (95% CI 42.0%-65.9%, I2 = 98.9%). REC-approved studies with statistically significant results (compared with those without statistically significant results) were more likely to be published (pooled OR 2.8; 95% CI 2.2-3.5). Phase-III trials were also more likely to be published than phase II trials (pooled OR 2.0; 95% CI 1.6-2.5). The probability of publication within two years after study completion ranged from 7% to 30%. CONCLUSIONS: A substantial part of the studies approved by RECs or included in trial registries remains unpublished. Due to the large heterogeneity a prediction of the publication probability for a future study is very uncertain. Non-publication of research is not a random process, e.g., it is associated with the direction of study findings. Our findings suggest that the dissemination of research findings is biased

    BluePort: A Platform to Study the Eosinophilic Response of Mice to the Bite of a Vector of Leishmania Parasites, Lutzomyia longipalpis Sand Flies

    Get PDF
    transmission in residents of endemic areas has been attributed to the acquisition of immunity to sand fly salivary proteins. One theoretical way to accelerate the acquisition of this immunity is to increase the density of antigen-presenting cells at the sand fly bite site. Here we describe a novel tissue platform that can be used for this purpose. sand flies. Results presented indicate that a shift in the inflammatory response, from neutrophilic to eosinophilic, is the main histopathological feature associated with the immunity acquired through repeated exposure to the bite of sand flies, and that the BluePort tissue compartment could be used to accelerate this process. In addition, changes observed inside the BluePort parenchyma indicate that it could be used to study complex immunobiological processes, and to develop ectopic secondary lymphoid structures.Understanding the characteristics of the dermal response to the bite of sand flies is a critical element of strategies to control leishmaniasis using vaccines that target salivary proteins. Finding that dermal eosinophilia is such a prominent component of the anti-salivary immunity induced by repeated exposure to sand fly bites raises one important consideration: how to avoid the immunological conflict derived from a protective Th2-driven immunity directed to sand fly saliva with a protective Th1-driven immunity directed to the parasite. The BluePort platform is an ideal tool to address experimentally this conundrum

    Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci.

    Get PDF
    Three promising antibacterial peptides were studied with regard to their ability to inhibit the growth and kill the cells of clinical strains of Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. The multifunctional gramicidin S (GS) was the most potent, compared to the membranotropic temporin L (TL), being more effective than the innate-defence regulator IDR-1018 (IDR). These activities, compared across 16 strains as minimal bactericidal and minimal inhibitory concentrations (MIC), are independent of bacterial resistance pattern, phenotype variations and/or biofilm-forming potency. For S. aureus strains, complete killing is accomplished by all peptides at 5 × MIC. For E. faecalis strains, only GS exhibits a rapid bactericidal effect at 5 × MIC, while TL and IDR require higher concentrations. The biofilm-preventing activities of all peptides against the six strains with the largest biofilm biomass were compared. GS demonstrates the lowest minimal biofilm inhibiting concentrations, whereas TL and IDR are consistently less effective. In mature biofilms, only GS completely kills the cells of all studied strains. We compare the physicochemical properties, membranolytic activities, model pharmacokinetics and eukaryotic toxicities of the peptides and explain the bactericidal, antipersister and antibiofilm activities of GS by its elevated stability, pronounced cell-penetration ability and effective utilization of multiple modes of antibacterial action

    Cardiovascular Response to Beta-Adrenergic Blockade or Activation in 23 Inbred Mouse Strains

    Get PDF
    We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the β-adrenergic receptor blocker atenolol or under a low and a high dose of the β-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H2>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to β-stimulation and β-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains
    corecore