15 research outputs found

    Atomic scale structure and its impact on the band gap energy for Cu2Zn Sn,Ge Se4 kesterite alloys

    Get PDF
    Kesterite based materials gain more and more relevance in the pursuit of affordable, efficient and flexible absorber materials for thin film photovoltaics. Alloying Cu(2)ZnSnSe(4)with Ge could allow controlled band gap engineering as already established for Cu(In,Ga)(S,Se)(2)based solar cells. This study investigates the local atomic arrangements of Cu2Zn(Sn,Ge)Se(4)alloys by means of low temperature Extended x-ray Absorbtion Fine Structure Spectroscopy. The element specific bond lengths are used together with x-ray diffraction data to derive the anion positions of the different local configurations.Ab initiotheoretical calculations are performed to predict the influence of structural parameters such as anion position and lattice constants on the band gap energy. Combining the results of the experimental and theoretical studies suggests that the overall influence of the structural changes on the band gap bowing due to alloying is significant yet smaller than the total non-linear change of the band gap energy. Consequently, it is concluded, that band gap bowing stems from both structural and electronic changes

    Atomic Scale Structure of Ag,Cu 2 ZnSnSe4 and Cu2Zn Sn,Ge Se 4 Kesterite Thin Films

    Get PDF
    Kesterite based materials are being researched and developed as affordable, efficient, and mechanically flexible absorber materials for thin film photovoltaics. Both Ag,Cu 2ZnSnSe4 and Cu2Zn Sn,Ge Se4 based devices have shown great potential in overcoming some of the remaining challenges for further increasing the conversion efficiency of kesterite based solar cells. This study therefore investigates the long range crystallographic structure and the local atomic scale structure of technologically relevant thin films by means of grazing incidence X ray diffraction and low temperature X ray absorption spectroscopy. As expected, the unit cell dimensions change about an order of magnitude more than the element specific average bond lengths. In case of Cu2Zn Sn,Ge Se4, the thin film absorbers show a very similar behavior as Cu2Zn Sn,Ge Se4 powder samples previously studied. Small amounts of residual S in the thin films were taken into account in the analysis and the results imply a preferential formation of Sn S bonds instead of Ge S bonds. In Ag,Cu 2ZnSnSe4, the dependence of the Ag Se and Cu Se bond lengths on Ag Ag Cu might indicate an energetic advantage in the formation of certain local configuration

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
    corecore