625 research outputs found

    Course of neuropsychological impairment during Natalizumab associated progressive multifocal leukoencephalopathy.

    Get PDF
    BACKGROUND Progressive multifocal leukoencephalopathy (PML) - an opportunistic infection of the central nervous system with the John Cunningham virus (JCV) - is a side-effect of Natalizumab (NTZ) treatment for relapsing remitting (RR) multiple sclerosis (MS), potentially leading to a substantial increase of physical and also mental disability. Nevertheless, data of neuropsychological impairment during NTZ-PML disease course is missing. OBJECTIVE To evaluate the neuropsychological disease course of NTZ-PML patients and to compare neuropsychological deficits of NTZ-PML patients with two different non-PML MS cohorts. METHODS Neuropsychological examinations of 28 NTZ-PML patients performed during different phases of the disease (I. at PML-diagnosis, II. during immune reconstitution inflammatory syndrome and III. post-IRIS/PML) were retrospectively analyzed and compared to those of NTZ treated RRMS or SPMS patients with and without immunotherapy. RESULTS Compared to controls, NTZ-PML patients performed worse in neuropsychological examinations during all stages of disease mainly affecting visuo-spatial abilitiy and working memory. Furthermore, failure to eliminate the JCV from the central nervous system (CNS) was associated with a progredient decline of cognition, especially working memory. CONCLUSION Working-memory and visuospatial ability are the core neuropsychological deficits of NTZ-PML patients even in long-term-follow-up. Our finding should be implemented in neurorehabilitation strategies

    Functional characterization of the vertebrate primary ureter: Structure and ion transport mechanisms of the pronephric duct in axolotl larvae (Amphibia)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Three kidney systems appear during vertebrate development: the pronephroi, mesonephroi and metanephroi. The pronephric duct is the first or primary ureter of these kidney systems. Its role as a key player in the induction of nephrogenic mesenchyme is well established. Here we investigate whether the duct is involved in urine modification using larvae of the freshwater amphibian <it>Ambystoma mexicanum </it>(axolotl) as model.</p> <p>Results</p> <p>We investigated structural as well as physiological properties of the pronephric duct. The key elements of our methodology were: using histology, light and transmission electron microscopy as well as confocal laser scanning microscopy on fixed tissue and applying the microperfusion technique on isolated pronephric ducts in combination with single cell microelectrode impalements. Our data show that the fully differentiated pronephric duct is composed of a single layered epithelium consisting of one cell type comparable to the principal cell of the renal collecting duct system. The cells are characterized by a prominent basolateral labyrinth and a relatively smooth apical surface with one central cilium. Cellular impalements demonstrate the presence of apical Na<sup>+ </sup>and K<sup>+ </sup>conductances, as well as a large K<sup>+ </sup>conductance in the basolateral cell membrane. Immunolabeling experiments indicate heavy expression of Na<sup>+</sup>/K<sup>+</sup>-ATPase in the basolateral labyrinth.</p> <p>Conclusions</p> <p>We propose that the pronephric duct is important for the subsequent modification of urine produced by the pronephros. Our results indicate that it reabsorbs sodium and secretes potassium via channels present in the apical cell membrane with the driving force for ion movement provided by the Na<sup>+</sup>/K<sup>+ </sup>pump. This is to our knowledge the first characterization of the pronephric duct, the precursor of the collecting duct system, which provides a model of cell structure and basic mechanisms for ion transport. Such information may be important in understanding the evolution of vertebrate kidney systems and human diseases associated with congenital malformations.</p

    Increased amino acids levels and the risk of developing of hypertriglyceridemia in a 7-year follow-up

    Get PDF
    BACKGROUND: Recently, five branched-chain and aromatic amino acids were shown to be associated with the risk of developing type 2 diabetes (T2D). AIM: We set out to examine whether amino acids are also associated with the development of hypertriglyceridemia. MATERIALS AND METHODS: We determined the serum amino acids concentrations of 1,125 individuals of the KORA S4 baseline study, for which follow-up data were available also at the KORA F4 7 years later. After exclusion for hypertriglyceridemia (defined as having a fasting triglyceride level above 1.70 mmol/L) and diabetes at baseline, 755 subjects remained for analyses. RESULTS: Increased levels of leucine, arginine, valine, proline, phenylalanine, isoleucine and lysine were significantly associated with an increased risk of hypertriglyceridemia. These associations remained significant when restricting to those individuals who did not develop T2D in the 7-year follow-up. The increase per standard deviation of amino acid level was between 26 and 40 %. CONCLUSIONS: Seven amino acids were associated with an increased risk of developing hypertriglyceridemia after 7 years. Further studies are necessary to elucidate the complex role of these amino acids in the pathogenesis of metabolic disorders

    Sisyphus Cooling of Electrically Trapped Polyatomic Molecules

    Full text link
    The rich internal structure and long-range dipole-dipole interactions establish polar molecules as unique instruments for quantum-controlled applications and fundamental investigations. Their potential fully unfolds at ultracold temperatures, where a plethora of effects is predicted in many-body physics, quantum information science, ultracold chemistry, and physics beyond the standard model. These objectives have inspired the development of a wide range of methods to produce cold molecular ensembles. However, cooling polyatomic molecules to ultracold temperatures has until now seemed intractable. Here we report on the experimental realization of opto-electrical cooling, a paradigm-changing cooling and accumulation method for polar molecules. Its key attribute is the removal of a large fraction of a molecule's kinetic energy in each step of the cooling cycle via a Sisyphus effect, allowing cooling with only few dissipative decay processes. We demonstrate its potential by reducing the temperature of about 10^6 trapped CH_3F molecules by a factor of 13.5, with the phase-space density increased by a factor of 29 or a factor of 70 discounting trap losses. In contrast to other cooling mechanisms, our scheme proceeds in a trap, cools in all three dimensions, and works for a large variety of polar molecules. With no fundamental temperature limit anticipated down to the photon-recoil temperature in the nanokelvin range, our method eliminates the primary hurdle in producing ultracold polyatomic molecules. The low temperatures, large molecule numbers and long trapping times up to 27 s will allow an interaction-dominated regime to be attained, enabling collision studies and investigation of evaporative cooling toward a BEC of polyatomic molecules

    Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers

    Get PDF
    Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8 x 10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8 x 10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation
    • …
    corecore