267 research outputs found

    Diagnostic Accuracy of S100B Urinary Testing at Birth in Full-Term Asphyxiated Newborns to Predict Neonatal Death

    Get PDF
    BACKGROUND: Neonatal death in full-term infants who suffer from perinatal asphyxia (PA) is a major subject of investigation, since few tools exist to predict patients at risk of ominous outcome. We studied the possibility that urine S100B measurement may identify which PA-affected infants are at risk of early postnatal death. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study between January 1, 2001 and December 1, 2006 we measured S100B protein in urine collected from term infants (n = 132), 60 of whom suffered PA. According to their outcome at 7 days, infants with PA were subsequently classified either as asphyxiated infants complicated by hypoxic ischemic encephalopathy with no ominous outcome (HIE Group; n = 48), or as newborns who died within the first post-natal week (Ominous Outcome Group; n = 12). Routine laboratory variables, cerebral ultrasound, neurological patterns and urine concentrations of S100B protein were determined at first urination and after 24, 48 and 96 hours. The severity of illness in the first 24 hours after birth was measured using the Score for Neonatal Acute Physiology-Perinatal Extension (SNAP-PE). Urine S100B levels were higher from the first urination in the ominous outcome group than in healthy or HIE Groups (p<0.001 for all), and progressively increased. Multiple logistic regression analysis showed a significant correlation between S100B concentrations and the occurrence of neonatal death. At a cut-off >1.0 microg/L S100B had a sensitivity/specificity of 100% for predicting neonatal death. CONCLUSIONS/SIGNIFICANCE: Increased S100B protein urine levels in term newborns suffering PA seem to suggest a higher risk of neonatal death for these infants

    Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

    Get PDF
    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections

    The Neurology of Early Childhood [ Abridged

    No full text
    • 

    corecore