14 research outputs found

    A Special Section on Sensing Materials and Devices

    No full text

    Dielectric Analysis in Amorphous Ge 8

    No full text

    2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications

    No full text
    The absorption and binding energy of material plays an important role with a large surface area and conductivity for the development of any sensing device. The newly grown 2D nanomaterials like black phosphorus transition metal dichalcogenides (TMDCs) or graphene have excellent properties for sensing devices’ fabrication. This paper summarizes the progress in the area of the 2D nanomaterial-based surface plasmon resonance (SPR) sensor during last decade. The paper also focuses on the structure of Kretschmann configuration, the sensing principle of SPR, its characteristic parameters, application in various fields, and some important recent works related to SPR sensors have also been discussed, based on the present and future scope of this field. The present paper provides a platform for researchers to work in the field of 2D nanomaterial-based SPR sensors

    Biomass-Mediated Synthesis of Cu-Doped TiO2 Nanoparticles for Improved-Performance Lithium-Ion Batteries

    No full text
    Pure TiO2 and Cu-doped TiO2 nanoparticles are synthesized by the biomediated green approach using the Bengal gram bean extract. The extract containing biomolecules acts as capping agent, which helps to control the size of nanoparticles and inhibit the agglomeration of particles. Copper is doped in TiO2 to enhance the electronic conductivity of TiO2 and its electrochemical performance. The Cu-doped TiO2 nanoparticle-based anode shows high specific capacitance, good cycling stability, and rate capability performance for its envisaged application in lithium-ion battery. Among pure TiO2, 3% Cu-doped TiO2, and 7% Cu-doped TiO2 anode, the latter shows the highest capacity of 250 mAh g–1 (97.6% capacity retention) after 100 cycles and more than 99% of coulombic efficiency at 0.5 A g–1 current density. The improved electrochemical performance in the 7% Cu-doped TiO2 is attributed to the synergetic effect between copper and titania. The results reveal that Cu-doped TiO2 nanoparticles might be contributing to the enhanced electronic conductivity, providing an efficient pathway for fast electron transfer

    High Power-Conversion Efficiency of Lead-Free Perovskite Solar Cells: A Theoretical Investigation

    No full text
    Solar cells based on lead-free perovskite have demonstrated great potential for next-generation renewable energy. The SCAPS-1D simulation software was used in this study to perform novel device modelling of a lead-free perovskite solar cell of the architecture ITO/WS2/CH3NH3SnI3/P3HT/Au. For the performance evaluation, an optimization process of the different parameters such as thickness, bandgap, doping concentration, etc., was conducted. Extensive optimization of the thickness and doping density of the absorber and electron transport layer resulted in a maximum power-conversion efficiency of 33.46% for our designed solar cell. Because of the short diffusion length and higher defect density in thicker perovskite, an absorber thickness of 1.2 µm is recommended for optimal solar cell performance. Therefore, we expect that our findings will pave the way for the development of lead-free and highly effective perovskite solar cells

    Yields, Soil Health and Farm Profits under a Rice-Wheat System: Long-Term Effect of Fertilizers and Organic Manures Applied Alone and in Combination

    No full text
    The rice-wheat system (RWS), managed over 10.5 Mha in the Indo-Gangetic Plains of India suffers from production fatigue caused by declining soil organic matter, multi-nutrient deficiencies and diminishing factor productivity. We, therefore, conducted a long-term field experiment (1998&ndash;1999 to 2017&ndash;2018) in Modipuram, India to study the effect of continuous use of farmyard manure (FYM) as an organic fertilizer (OF), mineral fertilizers applied alone (RDF) and their combination (IPNS), as well as the inclusion of forage berseem (IPNS+B) or forage cowpea (IPNS+C) on crop yield, soil health and profits. The long-term yield trends were positive (p &lt; 0.05) in all treatments except the control (unfertilized) in rice, and the control and RDF in wheat. Although the yields of rice, wheat and RWS were highest under IPNS treatments (IPNS, IPNS+B, IPNS+C), the maximum annual yield increase in rice (9.2%) and wheat (13.7%) was obtained under OF. A linear regression fitted to the yield data under different IPNS options revealed a highly significant (p &lt; 0.001) annual yield increase in rice (5.1 to 6.6%) and wheat (6.8 to 7.7%) crops. Continuous rice-wheat cropping with RDF brought an increase in soil bulk density (Db) over the initial Db at different soil profile depths, more so at depths of 30&ndash;45 cm, but inclusion of forage cowpea or berseem in every third year (IPNS+B or C) helped to decrease Db, not only in surface (0&ndash;15 cm) but also in sub-surface (15&ndash;30 and 30&ndash;45 cm depth) soil. Whereas soil organic carbon (SOC) increased under OF, IPNS and IPNS + legume (B or C) treatments, it remained unaffected under RDF after 20 RW cycles. The inclusion of legumes along with IPNS not only helped to trap the NO3&ndash;N from soil layers below 45 cm but also increased its retention in the upper soil (0&ndash;15 cm depth). On the other hand, RDF had a higher NO3&ndash;N content in the lower layers (beyond 45 cm depth), indicating downward NO3&ndash;N leaching beyond the root zone. A build-up of Olsen-P was noticed under RDF at different time intervals. The soil exchangeable K and available S contents were maximal under OF and IPNS options, whereas a decline in DTPA extractable-Zn was recorded under OF. Overall, RWS economics revealed that OF treatment involved the maximum cost of cultivation (US1174 ha−1) with the least economic net return (US1211 ha&minus;1). Conversely, IPNS + legume (B or C) had lowest cost of cultivation (US707 to 765 ha−1) and a significantly higher (p < 0.05) net return (US2233 to 2260 ha&minus;1). The study, thus, underlines the superiority of IPNS over RDF or OF; the inclusion of legumes gives an added advantage in terms of production sustainability and soil health. Further studies involving IPNS ingredients other than FYM is needed to develop location-specific IPNS recommendations
    corecore