79 research outputs found

    (R1464) Stability of the Artificial Equilibrium Points in the Low-Thrust Restricted Three-Body Problem with Variable Mass

    Get PDF
    In this article, we have investigated the existence and stability of the artificial equilibrium points (AEPs) in the low-thrust restricted three-body problem with variable mass. In this model of the low-thrust restricted three-body problem, we have considered both the primaries as point masses. The mass of the spacecraft varies with time according to Jeans’ law (1928). We have introduced a new concept for creating the AEPs in the restricted three-body problem with variable mass using continuous constant acceleration. We have derived the equations of motion of the spacecraft after using the space-time transformations of Meshcherskii. The AEPs have been created by cancelling the gravitational and centrifugal forces with the constant continuous low-thrust at the non-equilibrium points. The positions of these AEPs will depend not only on magnitude but also on the constant directions of the low-thrust acceleration. We have analyzed the linear stability of the AEPs and found that all the AEPs are unstable. Finally, we have drawn the zero velocity curves (ZVCs) to determine the possible regions of motion in which the spacecraft is free to move

    An intellectual disability syndrome with single nucleotide variants in <i>O-GlcNAc Transferase</i>

    Get PDF
    Contains fulltext : 220584.pdf (Publisher’s version ) (Open Access)Intellectual disability (ID) is a neurodevelopmental condition that affects ~1% of the world population. In total 5-10% of ID cases are due to variants in genes located on the X chromosome. Recently, variants in OGT have been shown to co-segregate with X-linked intellectual disability (XLID) in multiple families. OGT encodes O-GlcNAc transferase (OGT), an essential enzyme that catalyses O-linked glycosylation with β-N-acetylglucosamine (O-GlcNAc) on serine/threonine residues of thousands of nuclear and cytosolic proteins. In this review, we compile the work from the last few years that clearly delineates a new syndromic form of ID, which we propose to classify as a novel Congenital Disorder of Glycosylation (OGT-CDG). We discuss potential hypotheses for the underpinning molecular mechanism(s) that provide impetus for future research studies geared towards informed interventions

    Transcriptome analysis reveals immune pathways underlying resistance in the common carp Cyprinus carpio against the oomycete Aphanomyces invadans

    Get PDF
    Infection with Aphanomyces invadans is a serious fish disease with major global impacts. Despite affecting over 160 fish species, some of the species like the common carp Cyprinus carpio are resistant to A. invadans infection. In the present study, we investigated the transcriptomes of head kidney of common carp experimentally infected with A. invadans. In time course analysis, 5288 genes were found to be differentially expressed (DEGs), of which 731 were involved in 21 immune pathways. The analysis of immune-related DEGs suggested that efficient processing and presentation of A. invadans antigens, enhanced phagocytosis, recognition of pathogen-associated molecular patterns, and increased recruitment of leukocytes to the sites of infection contribute to resistance of common carp against A. invadans. Herein, we provide a systematic understanding of the disease resistance mechanisms in common carp at molecular level as a valuable resource for developing disease management strategies for this devastating fish-pathogenic oomycete

    Synthesis of graft copolymers based on hyaluronan and poly(3-hydroxyalkanoates)

    Get PDF
    This work reports the synthesis and characterisation of new amphiphilic hyaluronan (HA) grafted with poly(3-hydroxyalkanoates) (PHAs) conjugates. Hydrolytic depolymerisation of PHAs was used for the synthesis of defined oligo(3-hydroxyalkanoates)-containing carboxylic terminal moieties. A kinetic study of the depolymerisation was followed to prepare oligomers of required molecular weight. PHAs were coupled with hydroxyl groups of HA mediated by N, N'-carbonyldiimidazole (CDI) or HSTU Tetramethyl-O-(N-succinimidyl) uronium hexafluorophosphate. For the first time, the covalent bonding of oligo derivatives of P(3-hydroxybutyrate), P(3-hydroxyoctanoate), P(3-hydroxyoctanoate-co-3-hydroxydecanoate) and P(3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate) and HA was achieved by “grafting to” strategy. Achieved grafting degree was a function of hydrophobicity of PHA, Mw and polarity of the solvent. The most suitable reaction conditions were observed for oligo (3-hydroxybutyrate) grafted to HA (grafting degree of 14%). Graft copolymers were characterized by FT-IR, NMR, DSC and SEC-MALLS. Graft copolymers can be physically loaded with hydrophobic drugs and may serve as drug delivery system

    A global review of problematic and pathogenic parasites of farmed tilapia

    Get PDF
    Over the past 80 years, tilapia have been translocated globally for aquaculture; active production is recorded in >124 countries. Of 7 million tonnes of tilapia produced in aquaculture, 79% is from 79 countries outside the natural range of tilapia. Capture fisheries account for a further 723,627 tonnes of tilapia, and >47% of this is landed from established invasive populations outside Africa. Tilapias host a rich fauna of parasites, many of which have been translocated with their hosts. This review summarises >2500 host–parasite records from 73+ countries and >820 recorded tilapia translocations (provided in the supplementary materials). This work focuses on the notable pathogens that threaten the health of cultured populations of tilapia, providing a description of their pathology and includes species that also have substantial impacts on wild tilapia populations, where relevant. For each major parasite taxonomic group, we highlight which parasites have been translocated or have been acquired from the new environments into which tilapia have been introduced, together with remarks on standard treatment approaches and research on them and their management and control. Regarding the theme ‘Tilapia health: quo vadis?’, Africa has enormous potential for aquaculture growth, but substantial knowledge gaps about tilapia parasites in many African states remain, which creates associated production and biosecurity risks. For each parasitic group, therefore, the risks of parasite translocation to new regions as tilapia aquaculture industries expand are highlighted

    O-GlcNAcylation enhances CPS1 catalytic efficiency for ammonia and promotes ureagenesis

    Get PDF
    Life-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia&nbsp;in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc&nbsp;from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseases
    corecore