10 research outputs found

    High viremia and low level of transmitted drug resistance in anti-retroviral therapy-naïve perinatally-infected children and adolescents with HIV-1 subtype C infection

    Get PDF
    BACKGROUND: High plasma viremia in HIV-1 infection is associated with rapid CD4 cell decline and faster disease progression. Children with HIV infection have high viral loads, particularly in early childhood. In this study we sought to understand the relationship between duration of HIV-1 infection and viral dynamics among perinatally-infected children and adolescents in India along with transmitted drug resistance in this population. METHODS: During 2007–2011, cross-sectional samples were collected from ART-naïve children (n = 105) with perinatally-acquired HIV infection, aged 2–16 years from Bangalore, India. CD4 counts, viral load and in-house genotyping were performed and transmitted drug resistance mutations were identified using the World Health Organization recommendations for Surveillance of Drug Resistance Mutations (SDRM_2009) list. RESULTS: Among 105 children studied, 73.3% (77/105) were asymptomatic, but had a median viral load of 5.24 log copies/mL (IQR 4.62-5.66). In the adolescent age group, 54% (21/39) had high levels of viremia (median 5.14 log copies/mL) but were asymptomatic. HIV-1 subtyping identified 98% strains (103/105) as subtype C; one A1 and one unique recombinant form (URF). Transmitted NRTI resistance was 1.9% (2/105); NNRTI resistance was 4.8% (5/105) and overall prevalence of transmitted drug resistance was 5.7% (6/105). CONCLUSIONS: The high burden of plasma viremia found among untreated asymptomatic adolescents needs to be addressed both from an individual angle to halt disease progression, and from a public health perspective to arrest horizontal transmission. The low level of transmitted drug resistance among perinatally-infected children is reassuring; however with improving ART access globally, regular genotyping surveillance is indicated

    Human APOBEC3G-mediated hypermutation is associated with antiretroviral therapy failure in HIV-1 subtype C-infected individuals

    Get PDF
    Introduction: Human APOBEC3G/F (hA3G/F) restricts retroviral replication through G-to-A hypermutations, which can generate drug-resistant progenies in vitro. The clinical relevance is still inconclusive. To bridge this gap, we aim to study the role of these hypermutations in evolution of drug resistance; we characterised hA3G/F-mediated hypermutations in the RT region of the pol gene of patients with or without antiretroviral therapy (ART). Methods: In 88 HIV-1-positive individuals, drug resistance genotyping was carried out in plasma virus and provirus by population sequencing. Hypermutations were determined by three different approaches using Hypermut 2.0 software, cluster analysis and APOBEC3G-mediated defectives indices. Clinical and demographic characteristics of these individuals were studied in relation to these hypermutations. Results: hA3G/F-mediated hypermutated sequences in proviral DNA, but not in plasma virus, were identified in 11.4% (10/88) subjects. Proviral hypermutations were observed more frequently in patients with ART failure than in ART-naïve individuals (p=0.03). In therapy failure patients, proviral hypermutation were associated with greater intra-compartmental genetic diversity (p<0.001). In therapy-naïve individuals, hypermutated proviral DNA with M184I and M230I mutations due to the editing of hA3G, had stop codons in the open reading frames and the same mutations were absent in the plasma virus. Only a limited concordance was found between the drug resistance mutations in plasma RNA and proviral DNA. Conclusions: hA3G lethal hypermutation was significantly associated with ART failure in Indian HIV-1 subtype C patients. It is unlikely that viral variants, which exhibit hypermutated sequences and M184I and/or M230I, will mature and expand in vivo

    Circulating HLA-DR(+)CD4(+) effector memory T cells resistant to CCR5 and PD-L1 mediated suppression compromise regulatory T cell function in tuberculosis

    Get PDF
    Chronic T cell activation is a hallmark of pulmonary tuberculosis (PTB). The mechanisms underpinning this important phenomenon are however, poorly elucidated, though known to rely on control of T effector cells (Teff) by regulatory T cells (Treg). Our studies show that circulating natural Treg cells in adults with PTB preserve their suppressive potential but Teff cells from such subjects are resistant to Treg-mediated suppression. We found this to be due to expansion of an activated Teff subset identified by Human Leukocyte Antigen (HLA)DR expression. Sensitivity to suppression was restored to control levels by depletion of this subset. Comparative transcriptome analysis of Teff cells that contain HLA-DR+ cells versus the fraction depleted of this population identified putative resistance mechanisms linked to IFNG, IL17A, IL22, PD-L1 and beta-chemokines CCL3L3, CCL4 expression. Antibody blocking experiments confirmed HLA-DR+ Teff cells, but not the fraction depleted of HLA-DR+ effectors, to be resistant to Treg suppression mediated via CCR5 and PD-L1 associated pathways. In the presence of HLA-DR+ Teff cells, activation of NF kappa B downstream of CCR5 and PD-L1 was perturbed. In addition, HLA-DR+ Teff cells expressed significantly higher levels of Th1/Th17 cytokines that may regulate Treg function through a reciprocal counter-balancing relationship. Taken together, our study provides novel insight on how activated HLA-DR(+)CD4(+) T cells may contribute to disease associated inflammation by compromising Treg-mediated suppression in PTB

    Circulating Mycobacterium tuberculosis DosR latency antigen-specific, polyfunctional, regulatory IL10+ Th17 CD4 T-cells differentiate latent from active tuberculosis

    Get PDF
    The functional heterogeneity of T cell responses to diverse antigens expressed at different stages of Mycobacterium tuberculosis (Mtb) infection, in particular early secreted versus dormancy related latency antigens expressed later, that distinguish subjects with latent (LTBI), pulmonary (PTB) or extrapulmonary (EPTB) tuberculosis remains unclear. Here we show blood central memory CD4 T-cell responses specific to Mtb dormancy related (DosR) latency, but not classical immunodominant secretory antigens, to clearly differentiate LTBI from EPTB and PTB. The polyfunctionality score integrating up to 31 DosR-specific CD4 T-cell functional profiles was significantly higher in LTBI than EPTB or PTB subjects. Further analysis of 256 DosR-specific T-cell functional profiles identified regulatory IL10(+) Th17 cells (IL10(+) IL17A(+) IL17F(+) IL22+) to be significantly enriched in LTBI; in contrast to pro-inflammatory Th17 cells (IFN gamma+ IL17A(+)/IL10(-)) in the blood and lung of EPTB and PTB subjects respectively. A blood polyfunctional, Mtb DosR latency antigen specific, regulatory, central memory response is therefore a novel functional component of T-cell immunity in latent TB and potential correlate of protection

    Evidence for Highly Variable, Region-Specific Patterns of T-Cell Epitope Mutations Accumulating in Mycobacterium tuberculosis Strains

    Get PDF
    Vaccines that confer protection through induction of adaptive T-cell immunity rely on understanding T-cell epitope (TCE) evolution induced by immune escape. This is poorly understood in tuberculosis (TB), an ancient, chronic disease, where CD4 T-cell immunity is of recognized importance. We probed 905 functionally validated, curated human CD4 T cell epitopes in 79 Mycobacterium tuberculosis (Mtb) whole genomes from India. This screen resulted in identifying 64 mutated epitopes in these strains initially using a computational pipeline and subsequently verified by single nucleotide polymorphism (SNP) analysis. SNP based phylogeny revealed the 79 Mtb strains to cluster to East African Indian (EAI), Central Asian Strain (CAS), and Beijing (BEI) lineages. Eighty-nine percent of the mutated T-cell epitopes (mTCEs) identified in the 79 Mtb strains from India has not previously been reported. These mTCEs were encoded by genes with high nucleotide diversity scores including seven mTCEs encoded by six antigens in the top 10% of rapidly divergent Mtb genes encoded by these strains. Using a T cell functional assay readout, we demonstrate 62% of mTCEs tested to significantly alter CD4 T-cell IFN gamma and/or IL2 secretion with associated changes in predicted HLA-DR binding affinity: the gain of function mutations displayed higher predicted HLA-DR binding affinity and conversely mutations resulting in loss of function displayed lower predicted HLA-DR binding affinity. Most mutated antigens belonged to the cell wall/cell processes, and, intermediary metabolism and respiration families though all known Mtb proteins encoded mutations. Analysis of the mTCEs in an SNP database of 5,310 global Mtb strains identified 82% mTCEs to be significantly more prevalent in Mtb strains isolated from India, including 36 mTCEs identified exclusively in strains from India. These epitopes had a significantly higher predicted binding affinity to HLA-DR alleles that were highly prevalent in India compared to HLA-DR alleles rare in India, highlighting HLA-DR maybe an important driver of these mutations. This first evidence of region-specific TCE mutations potentially employed by Mtb to escape host immunity has important implications for TB vaccine design
    corecore