23 research outputs found

    Versatile scanning tunneling microscopy with 120ps time resolution

    Full text link
    We describe a fully ultra-high vacuum compatible scanning tunneling microscope (STM) optimized for radio-frequency signals. It includes in-situ exchangeable tips adapted to high frequency cabling and a standard sample holder, which offer access to the whole range of samples typically investigated by STM. We demonstrate a time resolution of 120 ps using the nonlinear I(V)-characteristic of the surface of highly oriented pyrolithic graphite. We provide atomically resolved images in pulse mode related to a spatially varying nonlinearity of the local density of states of the sample, thus, demonstrating the possible spatial resolution of the instrument in pulse mode. Analysis of the noise reveals that changes in the tunneling junction of 50 pA are dynamically detectable at 120 ps time resolution.Comment: 4 pages, 4 figure

    Graphene quantum dots probed by scanning tunneling spectroscopy and transport spectroscopy after local anodic oxidation

    Full text link
    Graphene quantum dots are considered as promising alternatives to quantum dots in III-V semiconductors, e.g., for the use as spin qubits due to their consistency made of light atoms including spin-free nuclei which both imply relatively long spin decoherene times. However, this potential has not been realized in experiments so far, most likely, due to a missing control of the edge configurations of the quantum dots. Thus, a more fundamental investigation of Graphene quantum dots appears to be necessary including a full control of the wave function properties most favorably during transport spectroscopy measurements. Here, we review the recent success in mapping wave functions of graphene quantum dots supported by metals, in particular Ir(111), and show how the goal of probing such wave functions on insulating supports during transport spectroscopy might be achieved.Comment: 14 pages, review articl

    One-dimensional Si chains embedded in Pt(111)and protected by a hexagonal boron-nitride monolayer

    Full text link
    Using scanning tunneling microscopy, we show that Si deposition on Pt(111) at 300K leads to a network of one-dimensional Si chains. On the bare Pt(111) surface, the chains, embedded into the Pt surface, are orientated along the -direction. They disappear within a few hours in ultrahigh vacuum due to the presence of residual gas. Exposing the chains to different gases deliberately reveals that CO is largely responsible for the disappearance of the chains. The chains can be stabilized by a monolayer of hexagonal boron nitride, which is deposited prior to the Si deposition. The resulting Si chains are rotated by 30{\deg} with respect to the chains on the bare Pt(111) surface and survive even an exposure to air for 10 minutes.Comment: 8 pages, 4 Figure

    Mask aligner for ultrahigh vacuum with capacitive distance control

    Full text link
    We present a mask aligner driven by three piezo motors which guides and aligns a SiN shadow mask under capacitive control towards a sample surface. The three capacitors for read out are located at the backside of the thin mask such that the mask can be placed in μ\mum distance from the sample surface, while keeping it parallel to the surface. Samples and masks can be exchanged in-situ and the mask can additionally be displaced parallel to the surface. We demonstrate an edge sharpness of the deposited structures below 100 nm, which is likely limited by the diffusion of the deposited Au on Si(111).Comment: 5 pages, 3 figure

    Evaluating the effectiveness of structural changes in the enterprise

    Get PDF
    Данная статья посвящена описанию шести ключевых шагов к эффективному управлению организационными изменениями. В статье рассматривается вопрос оценки и анализа организационных изменений в организации. Также в статье представлены восемь основных шагов для эффективного процесса управления изменениями.This article describes six key steps to effectively manage organizational change. The article deals with the issue of evaluating and analyzing organizational changes in an organization. The article also presents eight basic steps for an effective change management process

    Tuning the pseudospin polarization of graphene by a pseudo-magnetic field

    Get PDF
    One of the intriguing characteristics of honeycomb lattices is the appearance of a pseudo-magnetic field as a result of mechanical deformation. In the case of graphene, the Landau quantization resulting from this pseudo-magnetic field has been measured using scanning tunneling microscopy. Here we show that a signature of the pseudo-magnetic field is a local sublattice symmetry breaking observable as a redistribution of the local density of states. This can be interpreted as a polarization of graphene's pseudospin due to a strain induced pseudo-magnetic field, in analogy to the alignment of a real spin in a magnetic field. We reveal this sublattice symmetry breaking by tunably straining graphene using the tip of a scanning tunneling microscope. The tip locally lifts the graphene membrane from a SiO2_2 support, as visible by an increased slope of the I(z)I(z) curves. The amount of lifting is consistent with molecular dynamics calculations, which reveal a deformed graphene area under the tip in the shape of a Gaussian. The pseudo-magnetic field induced by the deformation becomes visible as a sublattice symmetry breaking which scales with the lifting height of the strained deformation and therefore with the pseudo-magnetic field strength. Its magnitude is quantitatively reproduced by analytic and tight-binding models, revealing fields of 1000 T. These results might be the starting point for an effective THz valley filter, as a basic element of valleytronics.Comment: Revised manuscript: streamlined the abstract and introduction, added methods to supplement, Nano Letters, 201

    Sub-nm wide electron channels protected by topology

    Full text link
    Helical locking of spin and momentum and prohibited backscattering are the key properties of topologically protected states. They are expected to enable novel types of information processing such as spintronics by providing pure spin currents, or fault tolerant quantum computation by using the Majorana fermions at interfaces of topological states with superconductors. So far, the required helical conduction channels used to realize Majorana fermions are generated through application of an axial magnetic field to conventional semiconductor nanowires. Avoiding the magnetic field enhances the possibilities for circuit design significantly. Here, we show that sub-nanometer wide electron channels with natural helicity are present at surface step-edges of the recently discovered topological insulator Bi14Rh3I9. Scanning tunneling spectroscopy reveals the electron channels to be continuous in both energy and space within a large band gap of 200 meV, thereby, evidencing its non-trivial topology. The absence of these channels in the closely related, but topologically trivial insulator Bi13Pt3I7 corroborates the channels' topological nature. The backscatter-free electron channels are a direct consequence of Bi14Rh3I9's structure, a stack of 2D topologically insulating, graphene-like planes separated by trivial insulators. We demonstrate that the surface of Bi14Rh3I9 can be engraved using an atomic force microscope, allowing networks of protected channels to be patterned with nm precision.Comment: 17 pages, 4 figures, and supplementary material, Nature Physics in pres

    Untersuchung magnetischer Nanostrukturen mittels Rastertunnelspektroskopie und Kerr-Magnetometrie am Beispiel von Fe, Co, Co-Fe und Fe-Mn Nanostrukturen

    No full text
    Nach einer kurzen Einführung in die Entwicklung der magnetischen Anwendungen, werden in Kapitel 2 und 3 die physikalischen Grundlagen der Messmethoden, insbesondere die Rastertunnelspektroskopie und Kerr-Magnetometrie, sowie der experimentelle Aufbau erläutert. Kapitel 4 beschäftigt sich mit den magnetischen Eigenschaften von quasi ein-dimensionalen ferromagnetischen Nanostreifen und Monolagen, die durch Selbstorganisation auf einem Wolfram(110)-Einkristall mit vizinaler und glatter Oberfläche präpariert werden. Hierbei wird die Temperaturabhängigkeit der magnetischen Größen, wie Remanenz, Sättigungsmagnetisierung und Suszeptibilität, sowie die Auswirkung einer Abdeckung des Systems auf die Domänenwandenergie und Anisotropie untersucht. Zusätzlich wird die Kopplung von parallelen Nanostreifen in Abhängigkeit des Streifenabstandes betrachtet. In Kapitel 5 werden das Wachstum und die Morphologie von Co-Monolagen auf W(110) untersucht. Der Übergang von pseudomorphem zu dicht gepacktem Wachstum in der Monolage wird mit Hilfe der Rastertunnelspektroskopie sichtbar gemacht, ebenso wie unterschiedliche Stapelfolgen in Tripellagen Co-Systemen. Atomar aufgelöste Rastertunnelmikroskopie erlaubt die genauen Atompositionen der Oberfläche zu bestimmen und mit theoretischen Wachstumsmodellen zu vergleichen. Auf die Untersuchung zwei-dimensionaler binärer Co-Fe und Fe-Mn Legierungen auf W(110) wird in Kapitel 6 eingegangen. Mit einer Präparationstemperatur von T=520 K ist es möglich, atomar geordnete Co-Fe Legierungsmonolagen wachsen zu lassen. Ein direkter Zusammenhang zwischen der Magnetisierung und der lokalen Zustandsdichte in Abhängigkeit der Legierungszusammensetzung wird gezeigt.After a short introduction into the development of the magnetic applications, the physical background of the experiments, especially Kerr-magnetometry and scanning tunneling spectroscopy, will be described in chapter 2 and 3. Chapter 4 deals with the magnetic properties of quasi one-dimensional ferromagnetic nanostripes and monolayers. All samples are grown on a tungsten(110) single-crystal with a flat and a vicinal surface. The temperature dependence of the remanence, saturation magnetization and susceptibility is investigated as well as the influence of a coverage on the domain wall energy and anisotropy. Additionally, the magnetic coupling of a nanostripe-array depending on the stripe distance will be discussed. In chapter 5 the growth and morphology of Co/W(110)-monolayers will be investigated. The transition from pseudomorphic to close packed growth in the monolayer and different stacking sequences in triple layers are visualized by scanning tunneling spectroscopy. The exact atomic positions, determined by atomically resolved images, are compared to theoretical growth models. The investigation of two-dimensional binary Co-Fe and Fe-Mn alloys on W(110) will be described in chapter 6. It is possible to grow atomically ordered Co-Fe alloy monolayers using an annealing temperature of T=520 K. A correlation between the magnetization and the local density of states depending on the alloy composition will be shown
    corecore