236 research outputs found

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change

    Pathogenesis of aerosolized Eastern Equine Encephalitis virus infection in guinea pigs

    Get PDF
    Mice and guinea pigs were experimentally exposed to aerosols containing regionally-distinct strains (NJ1959 or ArgM) of eastern equine encephalitis virus (EEEV) at two exclusive particle size distributions. Mice were more susceptible to either strain of aerosolized EEEV than were guinea pigs; however, clinical signs indicating encephalitis were more readily observed in the guinea pigs. Lower lethality was observed in both species when EEEV was presented at the larger aerosol distribution (> 6 ΞΌm), although the differences in the median lethal dose (LD50) were not significant. Virus isolation and immunohistochemistry indicated that virus invaded the brains of guinea pigs within one day postexposure, regardless of viral strain or particle size distribution. Immunohistochemistry further demonstrated that neuroinvasion occurred through the olfactory system, followed by transneuronal spread to all regions of the brain. Olfactory bipolar neurons and neurons throughout the brain were the key viral targets. The main microscopic lesions in infected guinea pigs were neuronal necrosis, inflammation of the meninges and neuropil of the brain, and vasculitis in the brain. These results indicate that guinea pigs experimentally infected by aerosolized EEEV recapitulate several key features of fatal human infection and thus should serve as a suitable animal model for aerosol exposure to EEEV

    Scalable Rules for Coherent Group Motion in a Gregarious Vertebrate

    Get PDF
    Individuals of gregarious species that initiate collective movement require mechanisms of cohesion in order to maintain advantages of group living. One fundamental question in the study of collective movement is what individual rules are employed when making movement decisions. Previous studies have revealed that group movements often depend on social interactions among individual members and specifically that collective decisions to move often follow a quorum-like response. However, these studies either did not quantify the response function at the individual scale (but rather tested hypotheses based on group-level behaviours), or they used a single group size and did not demonstrate which social stimuli influence the individual decision-making process. One challenge in the study of collective movement has been to discriminate between a common response to an external stimulus and the synchronization of behaviours resulting from social interactions. Here we discriminate between these two mechanisms by triggering the departure of one trained Merino sheep (Ovis aries) from groups containing one, three, five and seven naΓ―ve individuals. Each individual was thus exposed to various combinations of already-departed and non-departed individuals, depending on its rank of departure. To investigate which individual mechanisms are involved in maintaining group cohesion under conditions of leadership, we quantified the temporal dynamic of response at the individual scale. We found that individuals' decisions to move do not follow a quorum response but rather follow a rule based on a double mimetic effect: attraction to already-departed individuals and attraction to non-departed individuals. This rule is shown to be in agreement with an adaptive strategy that is inherently scalable as a function of group size

    Herpesvirus Telomerase RNA(vTR)-Dependent Lymphoma Formation Does Not Require Interaction of vTR with Telomerase Reverse Transcriptase (TERT)

    Get PDF
    Telomerase is a ribonucleoprotein complex involved in the maintenance of telomeres, a protective structure at the distal ends of chromosomes. The enzyme complex contains two main components, telomerase reverse transcriptase (TERT), the catalytic subunit, and telomerase RNA (TR), which serves as a template for the addition of telomeric repeats (TTAGGG)n. Marek's disease virus (MDV), an oncogenic herpesvirus inducing fatal lymphoma in chickens, encodes a TR homologue, viral TR (vTR), which significantly contributes to MDV-induced lymphomagenesis. As recent studies have suggested that TRs possess functions independently of telomerase activity, we investigated if the tumor-promoting properties of MDV vTR are dependent on formation of a functional telomerase complex. The P6.1 stem-loop of TR is known to mediate TR-TERT complex formation and we show here that interaction of vTR with TERT and, consequently, telomerase activity was efficiently abrogated by the disruption of the vTR P6.1 stem-loop (P6.1mut). Recombinant MDV carrying the P6.1mut stem-loop mutation were generated and tested for their behavior in the natural host in vivo. In contrast to viruses lacking vTR, all animals infected with the P6.1mut viruses developed MDV-induced lymphomas, but onset of tumor formation was significantly delayed. P6.1mut viruses induced enhanced metastasis, indicating functionality of non-complexed vTR in tumor dissemination. We discovered that RPL22, a cellular factor involved in T-cell development and virus-induced transformation, directly interacts with wild-type and mutant vTR and is, consequently, relocalized to the nucleoplasm. Our study provides the first evidence that expression of TR, in this case encoded by a herpesvirus, is pro-oncogenic in the absence of telomerase activity

    Dynamics in a stellar convective layer and at its boundary: Comparison of five 3D hydrodynamics codes

    Get PDF
    This is the final version. Available from EDP Sciences via the DOI in this recordOur ability to predict the structure and evolution of stars is in part limited by complex, 3D hydrodynamic processes such as convective boundary mixing. Hydrodynamic simulations help us understand the dynamics of stellar convection and convective boundaries. However, the codes used to compute such simulations are usually tested on extremely simple problems and the reliability and reproducibility of their predictions for turbulent flows is unclear. We define a test problem involving turbulent convection in a plane-parallel box, which leads to mass entrainment from, and internal-wave generation in, a stably stratified layer. We compare the outputs from the codes FLASH, MUSIC, PPMSTAR, PROMPI, and SLH, which have been widely employed to study hydrodynamic problems in stellar interiors. The convection is dominated by the largest scales that fit into the simulation box. All time-averaged profiles of velocity components, fluctuation amplitudes, and fluxes of enthalpy and kinetic energy are within ≲3Οƒ of the mean of all simulations on a given grid (1283 and 2563 grid cells), where Οƒ describes the statistical variation due to the flow’s time dependence. They also agree well with a 5123 reference run. The 1283 and 2563 simulations agree within 9% and 4%, respectively, on the total mass entrained into the convective layer. The entrainment rate appears to be set by the amount of energy that can be converted to work in our setup and details of the small-scale flows in the boundary layer seem to be largely irrelevant. Our results lend credence to hydrodynamic simulations of flows in stellar interiors. We provide in electronic form all outputs of our simulations as well as all information needed to reproduce or extend our study.Science and Technology Facilities Council (STFC)European Research Council (ERC

    NMDA Receptors Mediate Synaptic Competition in Culture

    Get PDF
    Background: Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings: GluN1-/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1-/- neighbour neurons, both relative to the GluN1-/neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10 % WT and 90

    A Micro RNA Processing Defect in Rapidly Progressing Idiopathic Pulmonary Fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis exhibits differential progression from the time of diagnosis but the molecular basis for varying progression rates is poorly understood. The aim of the present study was to ascertain whether differential miRNA expression might provide one explanation for rapidly versus slowly progressing forms of IPF. METHODOLOGY AND PRINCIPAL FINDINGS: miRNA and mRNA were isolated from surgical lung biopsies from IPF patients with a clinically documented rapid or slow course of disease over the first year after diagnosis. A quantitative PCR miRNA array containing 88 of the most abundant miRNA in the human genome was used to profile lung biopsies from 9 patients with rapidly progressing IPF, 6 patients with slowly progressing IPF, and 10 normal lung biopsies. Using this approach, 11 miRNA were significantly increased and 36 were significantly decreased in rapid biopsies compared with normal biopsies. Slowly progressive biopsies exhibited 4 significantly increased miRNA and 36 significantly decreased miRNA compared with normal lung. Among the miRNA present in IPF with validated mRNA targets were those with regulatory effects on epithelial-mesenchymal transition (EMT). Five miRNA (miR-302c, miR-423-5p, miR-210, miR-376c, and miR-185) were significantly increased in rapid compared with slow IPF lung biopsies. Additional analyses of rapid biopsies and fibroblasts grown from the same biopsies revealed that the expression of AGO1 and AGO2 (essential components of the miRNA processing RISC complex) were lower compared with either slow or normal lung biopsies and fibroblasts. CONCLUSION: These findings suggest that the development and/or clinical progression of IPF might be the consequence of aberrant miRNA processing

    A Novel Tetrameric PilZ Domain Structure from Xanthomonads

    Get PDF
    PilZ domain is one of the key receptors for the newly discovered secondary messenger molecule cyclic di-GMP (c-di-GMP). To date, several monomeric PilZ domain proteins have been identified. Some exhibit strong c-di-GMP binding activity, while others have barely detectable c-di-GMP binding activity and require an accessory protein such as FimX to indirectly respond to the c-di-GMP signal. We now report a novel tetrameric PilZ domain structure of XCC6012 from the plant pathogen Xanthomonas campestris pv. campestris (Xcc). It is one of the four PilZ domain proteins essential for Xcc pathogenicity. Although the monomer adopts a structure similar to those of the PilZ domains with very weak c-di-GMP binding activity, it is nevertheless interrupted in the middle by two extra long helices. Four XCC6012 proteins are thus self-assembled into a tetramer via the extra heptad repeat Ξ±3 helices to form a parallel four-stranded coiled-coil, which is further enclosed by two sets of inclined Ξ±2 and Ξ±4 helices. We further generated a series of XCC6012 variants and measured the unfolding temperatures and oligomeric states in order to investigate the nature of this novel tetramer. Discovery of this new PilZ domain architecture increases the complexity of c-di-GMP-mediated regulation
    • …
    corecore