8 research outputs found

    Design and characterisation of the new CIS115 sensor for JANUS, the high resolution camera on JUICE

    Get PDF
    JUICE, the Jupiter Icy Moon Explorer, is a European Space Agency L-class mission destined for the Jovian system. Due for launch in 2022, it will begin a science phase after its transit to Jupiter that will include detailed investigations of three of the Galilean moons: Ganymede, Callisto and Europa. JUICE will carry payloads to characterise the Jovian environments, divided into in situ, geophysical and remote sensing packages. A key instrument in the remote sensing package is JANUS, an optical camera operating over a wavelength range of 350 nm to 1064 nm. JANUS will be used to study the external layers of Jupiter’s atmosphere, the ring system and the planetary bodies. To achieve the science goals, resolutions of better than 5 m per pixel are required for the highest resolution observations during the 200 km altitude orbit of Ganymede, whilst the system is operated with a signal to noise ratio of better than 100. Jupiter’s magnetic field is a dominant object in the solar system, trapping electrons and other charged particles leading to the radiation environment around Jupiter being very hostile, especially in the regions closest to Jupiter in the Ganymede orbit. The radiation tolerance of the focal plane detector in JANUS is therefore a major concern and radiation testing is vital to confirm its expected performance after irradiation will meet requirements set by the science goals. JANUS will be using a detector from e2v technologies plc, the CMOS Imaging Sensor 115 (CIS115), which is a device manufactured using 0.18 μm Imaging CMOS Process with a 2000 by 1504 pixel array each 7 μm square. The pixels have a 4T pinned photodiode pixel architecture, and the array is read out through four differential analogue outputs. This paper describes the preliminary characterisation of the CIS115, and results obtained with the CIS107 precursor sensor

    A global shutter CMOS image sensor for hyperspectral imaging

    Get PDF
    Hyperspectral imaging has been providing vital information on the Earth landscape in response to the changing environment, land use and natural phenomena. While conventional hyperspectral imaging instruments have typically used rows of linescan CCDs, CMOS image sensors (CIS) have been slowly penetrating space instrumentation for the past decade, and Earth observation (EO) is no exception. CIS provide distinct advantages over CCDs that are relevant to EO hyperspectral imaging. The lack of charge transfer through the array allows the reduction of cross talk usually present in CCDs due to imperfect charge transfer efficiency, and random pixel addressing makes variable integration time possible, and thus improves the camera sensitivity and dynamic range. We have developed a 10T pixel design that integrates a pinned photodiode with global shutter and in-pixel correlated double sampling (CDS) to increase the signal to noise ratio in less intense spectral regimes, allowing for both high resolution and low noise hyperspectral imaging for EO. This paper details the characterization of a test device, providing baseline performance measurements of the array such as noise, responsivity, dark current and global shutter efficiency, and also discussing benchmark hyperspectral imaging requirements such as dynamic range, pixel crosstalk, and image lag

    First Detection of Leishmania major DNA in Sergentomyia (Spelaeomyia) darlingi from Cutaneous Leishmaniasis Foci in Mali

    Get PDF
    Leishmania major complex is the main causative agent of zoonotic cutaneous leishmaniasis (ZCL) in the Old World. Phlebotomus papatasi and Phlebotomus duboscqi are recognized vectors of L. major complex in Northern and Southern Sahara, respectively. In Mali, ZCL due to L. major is an emerging public health problem, with several cases reported from different parts of the country. The main objective of the present study was to identify the vectors of Leishmania major in the Bandiagara area, in Mali. Methodology/Principal Findings: An entomological survey was carried out in the ZCL foci of Bandiagara area. Sandflies were collected using CDC miniature light traps and sticky papers. In the field, live female Phlebotomine sandflies were identified and examined for the presence of promastigotes. The remaining sandflies were identified morphologically and tested for Leishmania by PCR in the ITS2 gene. The source of blood meal of the engorged females was determined using the cyt-b sequence. Out of the 3,259 collected sandflies, 1,324 were identified morphologically, and consisted of 20 species, of which four belonged to the genus Phlebotomus and 16 to the genus Sergentomyia. Leishmania major DNA was detected by PCR in 7 of the 446 females (1.6%), specifically 2 out of 115 Phlebotomus duboscqi specimens, and 5 from 198 Sergentomyia darlingi specimens. Human DNA was detected in one blood-fed female S. darlingi positive for L. major DNA. Conclusion: Our data suggest the possible involvement of P. duboscqi and potentially S. darlingi in the transmission of ZCL in Mali

    e2v new CCD and CMOS technology developments for astronomical sensors

    No full text
    ABSTRACT We present recent development in the technology of silicon sensors for astronomical applications. Novel CCD and CMOS sensors have been designed for low noise and high sensitivity astronomical use. High resistivity sensors allow thicker silicon for higher red sensitivity in several types of new CCD. The capability to manufacture large sets of CCDs to form large focal planes has allowed several very large mosaics to be built for astronomy with increasing formats on the ground and in space. In addition to supplying sensors we discuss increasing capacity and interest in the commercial supply of integrated "camera" systems

    Twenty-four new human cases of cutaneous leishmaniasis due to Leishmania killicki in Metlaoui, southwestern Tunisia. Probable role of Phlebotomus sergenti in the transmission

    No full text
    International audienceMetlaoui district in the South-west of Tunisia is a classical focus of cutaneous leishmaniasis (CL) due to Leishmania major. Since 2005, a single case of CL due to L. killicki has been reported. We report twenty four human cases due to this parasite, affecting men and women from 2 to 70 years old. Leishmania killicki have been typed using molecular techniques: polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) and gene sequencing. Four strains from patients have been successfully cultured on NNN medium and isoenzymatically typed as L. killicki MON-8. Our results strongly suggests that Metlaoui is a new L. killicki focus with a stable transmission cycle. Sand flies fauna in the same focus was also studied. 1400 Phlebotomine sand flies (785 males/615 females) have been caught during an entomological survey. Leishmania major DNA has been found in one P. papatasi female, the most abundant species, whereas L. killicki DNA has been found in one Phlebotomus sergenti female emphasizing the probable role of this species as vector of this zoonotic parasite

    Comments on Leishmania major in Gorilla Feces

    No full text
    To the Editor—As a group of experts with a long-term experience working in the field of leishmaniasis research, we wish to comment on the highly original finding by Hamad et al about the presence of Leishmania major promastigotes and amastigotes in gorilla feces in southern Cameroon
    corecore