9,126 research outputs found
LTE RSRP, RSRQ, RSSNR and local topography profile data for RF propagation planning and network optimization in an urban propagation environment
In the design of 5G cellular communication to guarantee quality signal reception at every point within a coverage area, fundamental knowledge of the channel propagation characteristics is vital. A correct knowledge of electromagnetic wave propagation is required for efficient radio network planning and optimization. Propagation data are used extensively in network planning, particularly for conducting feasibility studies. Hence, measurement of accurate propagation models that predict how the channel varies as people move about is crucial. However, these measured data are often not widely available for channel characterization and propagation model development. In this data article, the Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ) and Reference Signal Signal to Noise Ratio (RSSNR) at various points in space which is covered by a Long-Term Evolution (LTE) marco base station operating at 2100 MHz located in Hatfield, Hertfordshire, United Kingdom were measured. Further, local topography profile data of the study area were extracted from a digital elevation model (DEM) to account for the features of the propagation environment. Correlation matrix and descriptive statistics of the measured LTE data along different routes are analyzed. The RSRP, RSRQ and RSSNR variation with transmitter (Tx) – receiver (Rx) separation distance along the routes are presented. The probability distribution and the DEM of LTE data measurement are likewise presented. The data provided in this article will facilitate research advancement in wireless channel characterization that accounts for local topography features in an urban propagation environment. Moreover, the data sets provided in this article can be extended using simulation-based analysis to extract spatial and temporal channel model parameters in urban cellular environments in the development of 5G channel propagation models.Peer reviewedFinal Published versio
An economic evaluation of liquid manure disposal from confinement finishing hogs
Bibliography: p. 28
Recommended from our members
Indirect long-term global radiative cooling from NOx emissions
Anthropogenic emissions of short‐lived, chemically reactive gases, such as NO x and CO, are known to influence climate by altering the chemistry of the global troposphere and thereby the abundance of the greenhouse gases O3, CH4 and the HFCs. This study uses the characteristics of the natural modes of the tropospheric chemical system to decompose the greenhouse effect of NO x and CO emissions into (i) short‐lived modes involving predominantly tropospheric O3 and (ii) the long‐lived mode involving a global coupled CH4‐CO‐O3 perturbation. Combining these two classes of greenhouse perturbations—large, short‐lived, regional O3 increases and smaller, long‐lived, global decreases in CH4 and O3—we find that most types of anthropogenic NO x emissions lead to a negative radiative forcing and an overall cooling of the earth
Dividend drop ratios and tax theory:An intraday analysis under different tax and price quoting regimes
The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 1: Workshop objectives and summary
This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate
Global impact of the Antarctic ozone hole: Simulations with a 3-D chemical transport model
A study of the Antarctic ozone hole was made with a 3-D chemical transport model using linearized photochemistry for ozone based on observed distribution. The tracer model uses the winds and convection from the GISS general circulation model (8 deg x 10 deg x 23 layers). A 3-year control run of the ozone distribution is compared with the observed climatology. In two experiments, a hypothetical Antarctic ozone hole is induced on October 1 and on November 1; the tracer model is integrated for 1 year with the standard linearized chemistry. The initial depletion, 90 percent of the O sub 3 poleward of 70 S between 25 and 180 mbar, amounts to about 5 percent of the total O sub 3 in the Southerm Hemisphere. As the vortex breaks down and the hole is dispersed, significant depletions to column ozone, of order 10 D.U., occur as far north as 36 S during Austral summer. One year later, about 25 percent of the original depletion remains, mostly below 100 mbar and poleward of 30 S. Details of the calculations are shown, along with a budget analysis showing the fraction of the hole filled in by photochemistry versus that transported into the troposhere
Preferences for Domestic Action Over International Transfers in Global Climate Policy
AbstractCost-effective and equitable climate change mitigation requires the transfer of resources from developed to developing countries. In two behavioral experiments, we demonstrate that American subjects act according to a strong home preference, by making private donations and writing letters in support of public spending more often for mitigation programs located at home versus those overseas. We attempt to overcome the preference to act at home by randomly informing some subjects that foreign programs are more cost-effective than domestic programs. Home preference is mitigated only in the case of private donations. From a separate experimental treatment, we show that the preference against foreign programs is exacerbated when the co-benefits of mitigation programs are made salient. Importantly, home preference crosses party lines, indicating that it is a deep-seeded, affective preference. These findings highlight significant political obstacles to international cooperation on climate change that relies on transfers
- …
