649 research outputs found

    NASA's Centennial Challenge for 3D-Printed Habitat: Phase II Outcomes and Phase III Competition Overview

    Get PDF
    The 3D-Printed Habitat Challenge is part of NASA's Centennial Challenges Program. NASA's Centennial Challenges seek to accelerate innovation in aerospace technology development through public competitions. The 3D-Printed Habitat Challenge, launched in 2015, is part of the Centennial Challenges portfolio and focuses on habitat design and development of large-scale additive construction systems capable of fabricating structures from in situ materials and/or mission recyclables. The challenge is a partnership between NASA, Caterpillar (primary sponsor), Bechtel, Brick and Mortar Ventures, and Bradley University. Phase I of the challenge was an architectural concept competition in which participants generated conceptual renderings of habitats on Mars which could be constructed using locally available resources. Phase II asked teams to develop the printing systems and material formulations needed to translate these designs into reality. Work under the phase II competition, which concluded in August 2017 with a head to head competition at Caterpillar's Edward Demonstration Facility in Peoria, Illinois, is discussed, including the key technology development outcomes resulting from this portion of the competition. The phase III competition consists of both virtual and construction subcompetitions. Virtual construction asks teams to render high fidelity architectural models of a habitat and all the accompanying information required for construction of the pressure retaining and load bearing portions of the structure. In construction phase III, teams are asked to scale up their printing systems to produce a 1/3 scale habitat on-site at Caterpillar. The levels of the phase III construction competition (which include printing of a foundation and printing and hydrostatic testing of a habitat element) are discussed. Phase III construction also has an increased focus on autonomy, as these systems are envisioned for robotic precursor missions which would buildup infrastructure prior to the arrival of crew. Results of the phase III competition through July 2017 (which includes virtual construction level 1) are discussed. This Centennial Challenge enables an assessment of the scaleability and efficacy of various processes, material systems, and designs for planetary construction. There are also near-term terrestrial applications, from disaster response to affordable housing and infrastructure refurbishment, for these technologies

    Cytoskeletal Changes During Adhesion and Release: A Comparison of Human and Nonhuman Primate Platelets

    Get PDF
    The organization of cytoskeletal proteins in whole-mount adherent platelets from African green monkeys and normal human volunteers has been studied by SEM, high vacuum electron microscopy (HVEM) and conventional (120 kV) electron microscopy. We describe three distinct organizational zones, the Central Matrix, the Trabecular Zone and the Peripheral Web in spread platelets from both sources. The Central Matrix is an ill-defined superstructure of 80-100 Ã… filaments of short length which enshrouded the granules, dense bodies, mitochondria and elements of the open-channel and dense-tubular systems. The latter, identified through the use of peroxidase cytochemistry with the whole mounts, is an anastomosing network of elongate saccules having diameters of 600-1200 Ã…. The Trabecular Zone, which encircles the Central Matrix, contains 165, 80-100 and 30-50 Ã… filaments in an open lattice of irregular lattice spacing. The outermost region of the cells, the Peripheral Web, is comprised of 70 Ã… filaments organized in a honeycomb lattice with center to center spacing in the range 150-300 Ã…. This pattern for the spread cells is not consistently observed in cells during the early stages of adhesion; therefore, correlations of SEM and TEM observations are made for the various stages of adhesion/activation

    Neoclassical tearing modes in DIII-D and calculations of the stabilizing effects of localized electron cyclotron current drive

    Full text link
    Neoclassical tearing modes are found to limit the achievable beta in many high performance discharges in DIII-D. Electron cyclotron current drive within the magnetic islands formed as the tearing mode grows has been proposed as a means of stabilizing these modes or reducing their amplitude, thereby increasing the beta limit by a factor around 1.5. Some experimental success has been obtained previously on Asdex-U. Here the authors examine the parameter range in DIII-C in which this effect can best be studied

    Study of UV Degradation on Plastic (PET) Aerosols

    Get PDF
    The present study was aimed to explore the impact of UV radiation, from ‘real world’ environmental exposure, on the degradation of plastic PET aerosol containers. Additionally, the intent was to correlate the ‘real world’ environmental exposure to artificial sunlight, using a Xenon-Arc lamp, to develop a simulated test. The standardized methodology could then be used to evaluate the integrity of the plastic aerosol container and product, without the complexity of using ‘real world’ exposure. Through this study, a lab method was developed and validated that would simulate the effect of UV radiation using the Xenon-Arc. Moreover, a correlation was made for conditions inside the Xenon-Arc chamber that were conducive to testing a plastic pressurized container

    Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I

    Get PDF
    Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload
    • …
    corecore