1,785 research outputs found

    A note on chromospheric fine structure at active region polarity boundaries

    Get PDF
    High resolution H-alpha photographs for studying chromospheric fine structure at active region polarity boundarie

    Interpreting Rock-Cut Grave Cemeteries: the early medieval necropolis and enclosure of São Gens, Portugal

    Get PDF
    EXCAVATION AT SÃO GENS (Guarda district) in central Portugal has revealed an early medieval rock-cut grave cemetery and settlement, along with Roman and prehistoric evidence. The site presents an exceptionally rich palimpsest of archaeological monuments. This paper reviews the findings and seeks to address the problem of interpreting rock-cut grave cemeteries, by describing a spatial analytical methodology that draws on comparisons with early medieval cemeteries in England, as a means of enhancing the information deficit of such necropolises. In the light of these analyses, an interpretation of the São Gens site is offered in conclusion

    Retrieval of SO2 from thermal infrared satellite measurements: correction procedures for the effects of volcanic ash

    Get PDF
    The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR) data are used. The ash particles within the plume with effective radii from 1 to 10μm reduce the Top Of Atmosphere (TOA) radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7μm SO2 absorption bands, and the split window bands centered around 11 and 12μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Spin Enhanced Visible and Infrared Imager (SEVIRI) measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD) procedures, respectively. The simulated TOA radiance Look-Up Table (LUT) needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure underestimates the ash correction compared with the more time consuming but more accurate correction procedure. Such underestimation is greater for instruments having better ground pixel resolution, i.e. greater for MODIS than for SEVIRI

    On the Integrability of the Bukhvostov-Lipatov Model

    Get PDF
    The integrability of the Bukhvostov-Lipatov four-fermion model is investigated. It is shown that the classical model possesses a current of Lorentz spin 3, conserved both in the bulk and on the half-line for specific types of boundary actions. It is then established that the conservation law is spoiled at the quantum level -- a fact that might indicate that the quantum Bukhvostov-Lipatov model is not integrable, contrary to what was previously believed.Comment: 11 pages, 1 figure, LaTeX2e, AMS; new references adde

    Long range transport and fate of a stratospheric volcanic cloud from Soufrière Hills volcano, Montserrat

    Get PDF
    International audienceVolcanic eruptions emit gases, ash particles and hydrometeors into the atmosphere, occasionally reaching heights of 20 km or more, to reside in the stratospheric overworld where they affect the radiative balance of the atmosphere and the Earth's climate. Here we use satellite measurements and a Lagrangian particle dispersion model to determine the mass loadings, vertical penetration, horizontal extent, dispersion and transport of volcanic gases and particles in the stratosphere from the volcanic cloud emitted during the 20 May 2006 eruption of Soufrière Hills volcano, Montserrat, West Indies. Infrared, ultraviolet and microwave radiation measurements from two polar orbiters are used to quantify the gases and particles, and track the movement of the cloud for 23 days, over a distance of ~18 000 km. Approximately, 0.1±0.01 Tg(S) was injected into the stratosphere in the form of SO2: the largest single sulphur input to the stratosphere in 2006. Microwave Limb Sounder measurements indicate an enhanced mass of HCl of ~0.003?0.01 Tg. Geosynchronous satellite data reveal the rapid nature of the stratospheric injection and indicate that the eruption cloud contained ~2 Tg of ice, with very little ash reaching the stratosphere. These new satellite measurements of volcanic gases and particles can be used to test the sensitivity of climate to volcanic forcing and assess the impact of stratospheric sulphates on climate cooling

    Carrapato e vermes: inimigos do gado e do produtor.

    Get PDF
    bitstream/item/65290/1/CT-95-Carrapato-e-vermes.pd

    Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress\u2014Related Neurodegeneration

    Get PDF
    Neurodegenerative diseases include a variety of pathologies such as Alzheimer\u2019s disease, Parkinson\u2019s disease, Huntington\u2019s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer\u2019s and Parkinson\u2019s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorder
    • …
    corecore