390 research outputs found

    Comparison of long-term field-measured and RUSLE-based modelled soil loss in Switzerland

    Get PDF
    Long-term field measurements to asses model-based soil erosion predictions by water are rare. We have compared field measurements based on erosion assessment surveys from a 10-year monitoring process with spatial-explicit model predictions with the Revised Universal Soil Loss Equation (RUSLE). Robust input data were available for both the mapped and the modelled parameters for 203 arable fields covering an area of 258 ha in the Swiss Midlands. The 1639 mapped erosion forms were digitized and converted to raster format with a 2 m resolution. A digital terrain model using 2 m resolution and a multiple flow direction algorithm for the calculation of the topographic factors and the support practice factor was available for modelling with the RUSLE. The other input data for the RUSLE were determined for each field. The comparison of mapped and modelled soil loss values revealed a substantially higher estimation of soil loss values from modelling by a factor of 8, with a mean mapped soil loss of 0.77 t/ha/yr vs. modelled soil loss of 6.20 t/ha/yr. However, high mapped soil losses of >4 t/ha/yr were reproduced quite reliably by the model, while the model predicted drastically higher erosion values for mapped losses of <4 t/ha/yr. Our study shows the value of long-term field data based on erosion assessment surveys for model evaluation. RUSLE-type model results should be compared with erosion assessment surveys at the field to landscape scale in order to improve the calibration of the model. Further factors related to land management like headlands, traffic lanes and potato furrows need to be included before they may be used for policy advice

    Surface water floods in Switzerland: what insurance claim records tell us about the damage in space and time

    Get PDF
    Surface water floods (SWFs) have received increasing attention in the recent years. Nevertheless, we still know relatively little about where, when and why such floods occur and cause damage, largely due to a lack of data but to some degree also because of terminological ambiguities. Therefore, in a preparatory step, we summarize related terms and identify the need for unequivocal terminology across disciplines and international boundaries in order to bring the science together. Thereafter, we introduce a large (n = 63 117), long (10–33 years) and representative (48 % of all Swiss buildings covered) data set of spatially explicit Swiss insurance flood claims. Based on registered flood damage to buildings, the main aims of this study are twofold: First, we introduce a method to differentiate damage caused by SWFs and fluvial floods based on the geographical location of each damaged object in relation to flood hazard maps and the hydrological network. Second, we analyze the data with respect to their spatial and temporal distributions aimed at quantitatively answering the fundamental questions of how relevant SWF damage really is, as well as where and when it occurs in space and time. This study reveals that SWFs are responsible for at least 45 % of the flood damage to buildings and 23 % of the associated direct tangible losses, whereas lower losses per claim are responsible for the lower loss share. The Swiss lowlands are affected more heavily by SWFs than the alpine regions. At the same time, the results show that the damage claims and associated losses are not evenly distributed within each region either. Damage caused by SWFs occurs by far most frequently in summer in almost all regions. The normalized SWF damage of all regions shows no significant upward trend between 1993 and 2013. We conclude that SWFs are in fact a highly relevant process in Switzerland that should receive similar attention like fluvial flood hazards. Moreover, as SWF damage almost always coincides with fluvial flood damage, we suggest considering SWFs, like fluvial floods, as integrated processes of our catchments

    Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    Get PDF
    Eutrophication of surface waters due to diffuse phosphorus (P) losses continues to be a severe water quality problem worldwide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSAs) is expected to be most efficient and cost-effective, but requires suitable tools. <br><br> Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP) model to identify CSAs in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP) export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSAs. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs, the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality

    Dual-Element Isotope Analysis of Desphenylchloridazon to Investigate its Environmental Fate in a Systematic Field Study-A Long-Term Lysimeter Experiment

    Get PDF
    Desphenylchloridazon (DPC), the main metabolite of the herbicide chloridazon (CLZ), is more water soluble and persistent than CLZ and frequently detected in water bodies. When assessing DPC transformation in the environment, results can be nonconclusive if based on concentration analysis alone because estimates may be confounded by simultaneous DPC formation from CLZ. This study investigated the fate of DPC by combining concentration-based methods with compound-specific C and N stable isotope analysis (CSIA). Additionally, DPC formation and transformation processes were experimentally deconvolved in a dedicated lysimeter study considering three scenarios. First, surface application of DPC enabled studying its degradation in the absence of CLZ. Here, CSIA provided evidence of two distinct DPC transformation processes: one shows significant changes only in 13C/12C, whereas the other involves changes in both 13C/12C and 15N/14N isotope ratios. Second, surface application of CLZ mimicked a realistic field scenario, showing that during DPC formation, 13C/12C ratios of DPC were depleted in 13C relative to CLZ, while 15N/14N ratios remained constant. Finally, CLZ depth injection simulated preferential flow and demonstrated the importance of the topsoil for retaining DPC. The combination of the lysimeter study with CSIA enabled insights into DPC transformation in the field that are superior to those of studies of concentration trends

    Near threshold eta meson production in the d+d->alpha+eta reaction

    Full text link
    The d+d->alpha+eta reaction has been investigated near threshold using the ANKE facility at COSY-Juelich. Both total and differential cross sections have been measured at two excess energies, Q=2.6 MeV and 7.7 MeV, with a subthreshold measurement being undertaken at Q=-2.6 MeV to study the physical background. While consistent with isotropy at the lower energy, the angular distribution reveals a pronounced anisotropy at the higher one, indicating the presence of higher partial waves. Options for the decomposition into partial amplitudes and their consequences for determination of the s-wave eta-alpha scattering length are discussed.Comment: 8pp, fig.3 added, normalisation in eq.4.1 correcte

    Evidence of kaon nuclear and Coulomb potential effects on soft K+ production from nuclei

    Get PDF
    The ratio of forward K+ production on copper, silver and gold targets to that on carbon has been measured at proton beam energies between 1.5 and 2.3 GeV as a function of the kaon momentum p_K using the ANKE spectrometer at COSY-Juelich. The strong suppression in the ratios observed for p_K<200-250 MeV/c can be ascribed to a combination of Coulomb and nuclear repulsion in the K+A system. This opens a new way to investigate the interaction of K+-mesons in the nuclear medium. Our data are consistent with a K+A nuclear potential of V_K~20 MeV at low kaon momenta and normal nuclear density. Given the sensitivity of the data to the kaon potential, the current experimental precision might allow one to determine V_K to better than 3 MeV.Comment: 9 pages, 3 figures; changed conten

    Adsorbing vs. nonadsorbing tracers for assessing pesticide transport in arable soils

    Get PDF
    The suitability of two different tracers to mimic the behavior of pesticides in agricultural soils and to evidence the potential for preferential flow was evaluated in outdoor lysimeter experiments. The herbicide atrazine [6‐chloro‐N‐ethyl‐N′‐(1‐methylethyl)‐1,3,5‐triazine‐2,4‐diamine] was used as a model compound. Two tracers were used: a nonadsorbing tracer (bromide) and a weakly adsorbing dye tracer (uranine). Two soils that are expected to show a different extent of macropore preferential flow were used: a well‐drained sandy‐loamy Cambisol (gravel soil) and a poorly drained loamy Cambisol (moraine soil). Conditions for preferential flow were promoted by applying heavy simulated rainfall shortly after pesticide application. In some of the experiments, preferential flow was also artificially simulated by injecting the solutes through a narrow tube below the root zone. With depth injection, preferential leaching of atrazine occurred shortly after application in both soil types, whereas with surface application, it occurred only in the moraine soil. Thereafter, atrazine transport was mainly through the porous soil matrix, although contributions of preferential flow were also observed. For all the application approaches and soil types, after 900 d, <3% of the applied amount of atrazine was recovered in the drainage water. Only uranine realistically illustrated the early atrazine breakthrough by transport through preferential flow. Uranine broke through during the first intense irrigation at the same time as atrazine. Bromide, however, appeared earlier than atrazine in some cases. The use of dye tracers as pesticide surrogates might assist in making sustainable decisions with respect to pesticide application timing relative to rainfall or soil potential for preferential flow

    a0+(980)-resonance production in pp->dK+Kbar0 reactions close to threshold

    Get PDF
    The reaction pp->d K+ Kbar0 has been investigated at an excess energy of Q=46 MeV above the (K+ Kbar0) threshold with ANKE at COSY-Juelich. From the detected coincident dK+ pairs about 1000 events with a missing Kbar0 were identified, corresponding to a total cross section of sigma(pp->d K+ Kbar0)=(38 +/- 2(stat) +/- 14(syst)) nb. Invariant-mass and angular distributions have been jointly analyzed and reveal s-wave dominance between the two kaons, accompanied by a p-wave between the deuteron and the kaon system. This is interpreted in terms of a0+(980)-resonance production.Comment: 4 pages, 4 figures; accepted by Phys. Rev. Let

    Evaluating retinal and choroidal perfusion changes after isometric and dynamic activity using optical coherence tomography angiography

    Get PDF
    Optical coherence tomography angiography (OCTA) is a non-invasive tool for imaging and quantifying the retinal and choroidal perfusion state in vivo. This study aimed to evaluate the acute effects of isometric and dynamic exercise on retinal and choroidal sublayer perfusion using OCTA. A pilot study was conducted on young, healthy participants, each of whom performed a specific isometric exercise on the first day and a dynamic exercise the day after. At baseline and immediately after the exercise, heart rate (HR), mean arterial pressure (MAP), superficial capillary plexus perfusion (SCPP), deep capillary plexus perfusion (DCPP), choriocapillaris perfusion (CCP), Sattlers’s layer perfusion (SLP), and Haller’s layer perfusion (HLP) were recorded. A total of 34 eyes of 34 subjects with a mean age of 32.35 ± 7.87 years were included. HR as well as MAP increased significantly after both types of exercise. Both SCPP and DCPP did not show any significant alteration due to isometric or dynamic exercise. After performing dynamic exercise, CCP, SLP, as well as HLP significantly increased. Changes in MAP correlated significantly with changes in HLP after the dynamic activity. OCTA-based analysis in healthy adults following physical activity demonstrated a constant retinal perfusion, supporting the theory of autoregulatory mechanisms. Dynamic exercise, as opposed to isometric activity, significantly changed choroidal perfusion. OCTA imaging may represent a novel and sensitive tool to expand the diagnostic spectrum in the field of sports medicine
    corecore