102 research outputs found
Measuring liquid film thickness in annular two-phase flows by cold neutron imaging
An overview of a measurement method for liquid film thickness in annular flows based on cold neutron imaging is given here. Neutron imaging being a non-intrusive, contactless method is attractive option for two-phase flow investigations offering an excellent contrast. It can provide with information at a high spatial resolution on the flow structure, like the thickness of the liquid film in annular flows. The method has been optimized, and its performance, regarding bias, statistical accuracy, upper and lower detection limits, has been thoroughly quantified using computational tools and measurement results. The technique has been developed based on nuclear fuel bundle models; however, it is applicable practically to annular flows in any arbitrary flow channel geometry of interes
Experiments on two-phase flow in a vertical tube with a moveable obstacle
A novel technique to study the two-phase flow field around an asymmetric diaphragm in a vertical pipe is presented, that enables producing data for CFD code validation in complex geometries. Main feature is a translocation of the diaphragm to scan the 3D void field with a stationary wire-mesh sensor. Besides the measurement of time-averaged void fraction fields, a novel data evaluation method was developed to extract estimated liquid velocity profiles from the wire-mesh sensor data. The flow around an obstacle of the chosen geometry has many topological similarities with complex flow situations in bends, T-junctions, valves, safety valves and other components of power plant equipment and flow phenomena like curved stream lines, which form significant angles with the gravity vector, flow separation at sharp edges and recirculation zones in their wake are present. In order to assess the quality of the CFD code and their underlying multiphase flow and turbulence models pre-test calculations by ANSYS CFX 10.0 were carried out. A comparison between the calculation results and the experimental data shows a good agreement in term of all significant qualitative details of the void fraction and liquid velocity distributions. Furthermore, the report contains a method to assess the lateral components of bubble velocities in the form of a basic theoretical description and visualisation examples. The plots show the deviation of the flow around the obstacle in term of vectors represented the average velocities of the instantaneous cross-sections of all bubbles in the time interval when they pass the measuring plane. A detailed uncertainty analyse of the velocity assessments concludes the presented report. It includes remarks about the comparison with a second method for calculating bubble velocity profiles - the cross-correlation. In addition, this chapter gives an overview about the influence of acceleration and deceleration effects on the velocity estimation
Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications
The conceptual design and operational principle of a novel high-efficiency,
fast neutron imaging detector based on THGEM, intended for future fan-beam
transmission tomography applications, is described. We report on a feasibility
study based on theoretical modeling and computer simulations of a possible
detector configuration prototype. In particular we discuss results regarding
the optimization of detector geometry, estimation of its general performance,
and expected imaging quality: it has been estimated that detection efficiency
of around 5-8% can be achieved for 2.5MeV neutrons; spatial resolution is
around one millimeter with no substantial degradation due to scattering
effects. The foreseen applications of the imaging system are neutron tomography
in non-destructive testing for the nuclear energy industry, including
examination of spent nuclear fuel bundles, detection of explosives or drugs, as
well as investigation of thermal hydraulics phenomena (e.g., two-phase flow,
heat transfer, phase change, coolant dynamics, and liquid metal flow).Comment: 11 Pages; 6 Figures; Proceeding of the International Workshop on Fast
Neutron Detectors and Application FNDA2011, Ein Gedi, Israel, November 2011.
Published on the Journal of Instrumentation; 2012 JINST 7 C0205
Dissipative Strukturbildung bei exothermen Grenzflächenreaktionen
Der Bericht beschäftigt sich mit spontaner Grenzflächenkonvektion und -turbulenz beim Stoff- und Wärmeübergang an fluiden Phasengrenzen zwischen zwei nicht mischbaren Phasen. Solche Effekte sind von großer industrieller Bedeutung, da die erzielten Stoffübergangsraten um ein Vielfaches über den bei gewöhnlicher Diffusion auftretenden liegen. Zwei unterschiedliche Mechanismen sind der "Motor" für die Instabilitäten: Marangoni-Instabilität: Die Grenzflächenspannung ist eine Funktion der Temperatur und der Grenzflächenkonzentration des ausgetauschten Stoffes. Schwankungen der Temperatur und der Konzentration entlang der Phasengrenze führen folglich zu Grenzflächenspannungsgradienten. Grenzflächenspannungsgetriebene Instabilitäten äußern sich durch rollenförmige oder polygonale Konvektionszellen, Eruptionen oder Turbulenz an der Phasengrenze. Schwerkraftgetriebene Instabilität: Die Dichte ist ebenfalls eine Funktion der Temperatur und der Konzentration des gelösten Stoffes. Der Transport eines Stoffes über eine fluide Phasengrenze verändert die Zusammensetzung und die Dichte der angrenzenden Flüssigkeitsschichten, sodass instabile Dichteschichtungen auftreten können. Temperaturgradienten entstehen dabei durch Freisetzung von Reaktions- und/oder Lösungsenthalpie. Auftriebsbewegungen haben die Form von Thermiken (engl. plumes, thermals). Die Phänomene der Grenzflächenkonvektion werden in einer vertikalen Kapillarspaltgeometrie untersucht. Neben Stoffsystemen mit reaktivem Stoffübergang (Neutralisation von Karbonsäuren, Hydrolyse und Veresterung von Alkanoylhloriden) kamen auch solche mit reaktionsfreiem Stoffübergang (Karbonsäuren, Tensid) zur Anwendung. Die instabile Dichteschichtung, die durch den Konzentrationsgradienten infolge der Stoffdiffusion erzeugt wird, führt zu Auftriebskonvektion in Form von Thermiken. Die Anwesenheit einer exothermen Reaktion bewirkt eine Vergrößerung des Längenwachstums der Thermiken in der oberen Phase durch Aufprägung eines zusätzlich destabilisierenden Temperaturgradienten. In der unteren Phase kommt es dagegen zum Entstehen des doppeldiffusiven Fingerregimes bei Überlagerung des destabilisierenden Konzentrationsgradienten durch den stabilisierenden Temperaturgradienten. Beim Übergang eines Tensids konnten die für diese Stoffklasse charakteristischen Rollzellen, die durch Grenzflächenspannungsgradienten angetrieben werden, beobachtet werden. Diese Konvektionsstrukturen bleiben auf einen schmalen Bereich ober- und unterhalb der Phasengrenze beschränkt. Die Transportgleichungen für Impuls, Stoff und Wärme wurden in ihrer 2-dimensionalen Form in einen Rechenkode umgesetzt und der Übergang einer einzelnen Komponente simuliert. Die hydrodynamischen Bedingungen an der Phasengrenze wurden so formuliert, dass lokale Änderungen der Zusammensetzung und der Temperatur zu Grenzflächenspannungsgradienten führen und die Phasengrenze damit dem Marangonieffekt unterliegt. Die Stoffeigenschaften wurden mit Ausnahme der Dichte im Volumenkraftterm der Impulsgleichung als konstant angenommen, sodass dichtegetriebene Konvektionen simuliert werden können. Die verschiedenen Konvektionsformen werden durch die Simulation qualitativ gut wiedergegeben. Bei Marangonikonvektion kommt es zu einer Verschiebung des steilen Konzentrationsgradienten von der Phasengrenze in die Kerne der Phasen, was zum schnellen Absterben der Marangonikonvektion führt. Die Wiedergabe des Längenwachstums der Thermiken durch Simulation eines realen Stoffsystems ist zufriedenstellend. Ebenso gibt die Simulation eine realistische Abschätzung zu erwartender Stoffströme bei Anwesenheit hydrodynamischer Instabilitäten. Größere Abweichungen zwischen Simulation und Experiment sind jedoch bei der horizontalen Größenskala der Fingerstruktur festzustellen, die wahrscheinlich auf die Boussinesq-Approximation zurückzuführen sind
Experiments on upwards gas/liquid flow in vertical pipes
Two-phase flow experiments at vertical pipes are much suitable for studying the action of different constitutive relations characterizing the momentum exchange at the gas/liquid interface as well as the dynamic behaviour of the gas/liquid interface itself. The flow can be observed in its movement along the pipe and, in particular, within the shear field close to the pipe wall over a considerable vertical distance and, consequently, over a comparatively long time without the immediate separation of gas and liquid characteristic for horizontal flows. Wire-mesh sensors, which were the working horse in the described experiments, supplied sequences of instantaneous two-dimensional gas fraction distributions with a high-resolution in space and time. This allows to derive from the data not only void fraction and bubble velocity profiles, but also bubble size distributions, bubble-size resolved radial gas fraction profiles as well as the axial evolution of these distributions. An interfacial surface reconstruction algorithm was developed in order to extract the extension of interfacial area from the wire-mesh sensor data. The sensors were upgraded to withstand parameters that are close to nuclear reactor conditions. Most of the experiments were performed for both air/water flow at ambient pressure and steam/water flow of up to 6.5 MPa at identical combinations of the gas and liquid superficial velocities. This offers excellent conditions for studying the influence of the fluid properties
Kühlmittelvermischung in Druckwasserreaktoren Teil 1: Möglichkeiten geschlossener analytischer Lösungen und Simulation der Vermischung mit CFX-4
Ziel des Vorhabens war die analytische und numerische Simulation der Kühlmittelvermischung im Ringraum und unteren Plenum von Druckwasserreaktoren. Generell ist die Kühlmittelvermischung relevant für zwei große Störfallgruppen - Borsäureverdünnungsstörfälle und Kaltwassertransienten. Zur Untersuchung der Vermischungsphänomene aus diesen Störfallszenarien wurde die Rossendorfer Versuchsanlage ROCOM konzipiert, die ein 1:5 skaliertes Plexiglasmodell des DWR Konvoi darstellt, in dem auch Geschwindigkeitsmessungen mit Hilfe von LDA-Technik möglich sind. Konstruktion, Errichtung und meßtechnische Ausstattung von ROCOM erfolgten in einem 2. Teil des Vorhabens. Im Vorfeld der Errichtung des ROCOM-Versuchsstandes wurden mit Hilfe des dreidimensionalen Strömungsberechnungsprogrammes CFX-4 Skalierungseffekte untersucht. Die Vergleichsrechnungen belegten, daß eine 1:5 Skalierung ausreichend ist. Nach dem Aufbau des Versuchsstandes und der Inbetriebnahme im 2. Teil des Vorhabens wurden die Vorausberechnungen anhand von experimentellen Ergebnissen bestätigt. Es wurde weiterhin ein Verfahren zur vereinfachten analytischen 2D-Beschreibung des Strömungsfeldes im Ringraum von Druckwasserreaktoren aufgestellt. Es beruht auf der Potentialtheorie, wobei Quellen an den Kühlmitteleintrittspositionen und Wirbel unter Beachtung der Randbedingungen der typischen Ringspaltgeometrie von DWR überlagert wurden. Der Schwerpunkt des Projektes lag jedoch in der numerischen Simulation der Kühlmittelvermischung unterschiedlicher Reaktoranlagen mit CFX-4 und der Validierung des Rechenprogramms anhand von Vermischungsexperimenten. Dabei wurden sowohl stationäre Schleifendurchsätze bei Nominalbetrieb und Teilschleifenbetrieb bzw. transiente Strömungsbedingungen der Reaktortypen DWR Konvoi und WWER-440 untersucht. Die Ergebnisse der CFX-4 Rechnungen im Vergleich mit den Leitfähigkeits- bzw. LDA-Messungen sind im Abschlußbericht dokumentiert. Grundlage für diesen Abschlußbericht ist eine Promotionsarbeit von T. Höhne zum gleichnamigen Thema im Rahmen des Kompetenzerhaltungsprogrammes Kerntechnik
Construction and execution of experiments at the multi-purpose thermal hydraulic test facility TOPFLOW for generic investigations of two-phase flows and the development and validation of CFD codes - Final report
The works aimed at the further development and validation of models for CFD codes. For this reason, the new thermal-hydraulic test facility TOPFLOW was erected and equipped with wire-mesh sensors with high spatial and time resolution. Vertical test sections with nominal diameters of DN50 and DN200 operating with air-water as well as steam-water two-phase flows provided results on the evaluation of flow patterns, on the be¬haviour of the interfacial area as well as on interfacial momentum and heat transfer. The validation of the CFD-code for complex geometries was carried out using 3D void fraction and velocity distributions obtained in an experiment with an asymmetric obstacle in the large DN200 test section. With respect to free surface flows, stratified co- and counter-current flows as well as slug flows were studied in two horizontal test channels made from acrylic glass. Post-test calculations of these experiments succeeded in predicting the slug formation process. Corresponding to the main goal of the project, the experimental data was used for the model development. For vertical flows, the emphasis was put on lateral bubble forces (e.g. lift force). Different constitutive laws were tested using a Multi Bubble Size Class Test Solver that has been developed for this purpose. Basing on the results a generalized inhomogeneous Multiple Size Group (MUSIG) Model has been proposed and implemented into the CFD code CFX (ANSYS). Validation calculations with the new code resulted in the conclusion that particularly the models for bubble coalescence and fragmentation need further optimisation. Studies of single effects, like the assessment of turbulent dissipation in a bubbly flow and the analysis of trajectories of single bubbles near the wall, supplied other important results of the project
Versuchsanlage ROCOM zur Untersuchung der Kühlmittelvermischung in Druckwasserreaktoren - Ergebnisse quasistationärer Vermischungsexperimente
The test facility ROCOM (Rossendorf Coolant Mixing Model) has been built for the investigation of coolant mixing processes in the reactor pressure vessel of pressurised water reactors (PWR). ROCOM is a 1:5 model of the German PWR KONVOI and has been designed for a wide range of different mixing scenarios. ROCOM disposes of four loops with fully controllable coolant pumps. The test facility is operated with demineralised water. For the investigation of mixing, tracer solution (water labelled with salt) is injected into the facility. The transient distribution of the electrical conductivity is is measured at different positions of the flow path by means of wire-mesh sensor technique with high resolution in space and time. The measured conductivity is transformed into a dimensionless mixing scalar. The mixing at quasi-stationary conditions (constant loop mass flow rates) has been investigated in the presented experiments. That concerned nominal operation conditions, the operation with a reduced number of loops and the investigation of cold-water transients with running pumps and conditions of developed natural circulation. In special experimental series, the reproducibility of the results at identicla boundary conditions within the confidence intervalls has been shown. Further, the influence of various factors on the mixing has been investigated. This included the pressure losses at the core bottom plate, the global coolant flow level and the influence of the loop flow rate on the perturbed sector at the core inlet. An analysis of the measurement error of the used measurement technique completes the report
- …