494 research outputs found

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    4D Imaging and Diffraction Dynamics of Single-Particle Phase Transition in Heterogeneous Ensembles

    Get PDF
    In this Letter, we introduce conical-scanning dark-field imaging in four-dimensional (4D) ultrafast electron microscopy to visualize single-particle dynamics of a polycrystalline ensemble undergoing phase transitions. Specifically, the ultrafast metal–insulator phase transition of vanadium dioxide is induced using laser excitation and followed by taking electron-pulsed, time-resolved images and diffraction patterns. The single-particle selectivity is achieved by identifying the origin of all constituent Bragg spots on Debye–Scherrer rings from the ensemble. Orientation mapping and dynamic scattering simulation of the electron diffraction patterns in the monoclinic and tetragonal phase during the transition confirm the observed behavior of Bragg spots change with time. We found that the threshold temperature for phase recovery increases with increasing particle sizes and we quantified the observation through a theoretical model developed for single-particle phase transitions. The reported methodology of conical scanning, orientation mapping in 4D imaging promises to be powerful for heterogeneous ensemble, as it enables imaging and diffraction at a given time with a full archive of structural information for each particle, for example, size, morphology, and orientation while minimizing radiation damage to the specimen

    Photocatalytic Nanolithography of Self-Assembled Monolayers and Proteins

    Get PDF
    Self-assembled monolayers of alkylthiolates on gold and alkylsilanes on silicon dioxide have been patterned photocatalytically on sub-100 nm length-scales using both apertured near-field and apertureless methods. Apertured lithography was carried out by means of an argon ion laser (364 nm) coupled to cantilever-type near-field probes with a thin film of titania deposited over the aperture. Apertureless lithography was carried out with a helium–cadmium laser (325 nm) to excite titanium-coated, contact-mode atomic force microscope (AFM) probes. This latter approach is readily implementable on any commercial AFM system. Photodegradation occurred in both cases through the localized photocatalytic degradation of the monolayer. For alkanethiols, degradation of one thiol exposed the bare substrate, enabling refunctionalization of the bare gold by a second, contrasting thiol. For alkylsilanes, degradation of the adsorbate molecule provided a facile means for protein patterning. Lines were written in a protein-resistant film formed by the adsorption of oligo(ethylene glycol)-functionalized trichlorosilanes on glass, leading to the formation of sub-100 nm adhesive, aldehyde-functionalized regions. These were derivatized with aminobutylnitrilotriacetic acid, and complexed with Ni2+, enabling the binding of histidine-labeled green fluorescent protein, which yielded bright fluorescence from 70-nm-wide lines that could be imaged clearly in a confocal microscope

    A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome

    Get PDF
    Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk factor, although the possession of extra copies of other chromosome 21 genes may also play a role. Further study of the mechanisms underlying the development of Alzheimer disease in Down syndrome could provide insights into the mechanisms that cause dementia in the general population

    Long-acting injectable multipurpose prevention technology for prevention of HIV and unplanned pregnancy

    Get PDF
    Only condoms are proven to protect against both HIV and unplanned pregnancy, however, poor user acceptability and lack of partner cooperation impede effectiveness. We developed an injectable ultra-long-acting, biodegradable, and removable in-situ forming implant (ISFI) as multipurpose prevention technology (MPT). MPT ISFIs co-formulated an antiretroviral (dolutegravir (DTG)) or cabotegravir (CAB)), and a hormonal contraceptive (etonogestrel (ENG) or medroxyprogesterone acetate (MPA)). All formulations were well-tolerated in mice with no signs of chronic local or systemic inflammation. Plasma CAB and DTG concentrations were above 4x PA-IC90 for 90 days with zero-order and diffusion-controlled absorption, respectively, and no differences when co-formulated with either hormone. Plasma ENG and MPA concentrations were quantifiable for 90 days. Complete removal of CAB/MPA ISFIs resulted in MPA concentrations falling below the limit of quantification after 24 h post-removal, but incomplete CAB elimination from plasma. Collectively, we demonstrated the ability to co-formulate antiretrovirals with contraceptives in an ISFI that is well-tolerated with sustained plasma concentrations up to 90 days

    Modeling of subcontinuum thermal transport across semiconductor-gas interfaces

    Get PDF
    A physically rigorous computational algorithm is developed and applied to calculate subcontinuum thermal transport in structures containing semiconductor-gas interfaces. The solution is based on a finite volume discretization of the Boltzmann equation for gas molecules (in the gas phase) and phonons (in the semiconductor). A partial equilibrium is assumed between gas molecules and phonons at the interface of the two media, and the degree of this equilibrium is determined by the accommodation coefficients of gas molecules and phonons on either side of the interface. Energy balance is imposed to obtain a value of the interface temperature. The classic problem of temperature drop across a solid-gas interface is investigated with a simultaneous treatment of solid and gas phase properties for the first time. A range of transport regimes is studied, varying from ballistic phonon transport and free molecular flow to continuum heat transfer in both gas and solid. A reduced-order model is developed that captures the thermal resistance of the gas-solid interface. The formulation is then applied to the problem of combined gas-solid heat transfer in a two-dimensional nanoporous bed and the overall thermal resistance of the bed is characterized in terms of the governing parameters. These two examples exemplify the broad utility of the model in practical nanoscale heat transfer applications

    Nanofluids Research: Key Issues

    Get PDF
    Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscopic and megascale properties such as thermal conductivity through manipulating microscopic physics (structures, properties and activities). Therefore, the success of nanofluid technology depends very much on how well we can address issues like effective means of microscale manipulation, interplays among physics at different scales and optimization of microscale physics for the optimal megascale properties. In this work, we take heat-conduction nanofluids as examples to review methodologies available to effectively tackle these key but difficult problems and identify the future research needs as well. The reviewed techniques include nanofluids synthesis through liquid-phase chemical reactions in continuous-flow microfluidic microreactors, scaling-up by the volume averaging and constructal design with the constructal theory. The identified areas of future research contain microfluidic nanofluids, thermal waves and constructal nanofluids

    Graphene -- Based Nanocomposites as Highly Efficient Thermal Interface Materials

    Full text link
    We found that an optimized mixture of graphene and multilayer graphene - produced by the high-yield inexpensive liquid-phase-exfoliation technique - can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was determined that a relatively high concentration of single-layer and bilayer graphene flakes (~10-15%) present simultaneously with thicker multilayers of large lateral size (~ 1 micrometer) were essential for the observed unusual K enhancement. The thermal conductivity of a commercial thermal grease was increased from an initial value of ~5.8 W/mK to K=14 W/mK at the small loading f=2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene - multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene - matrix interface.Comment: 4 figure
    corecore