351 research outputs found
An interesting case of suicidal poisoning
Aconite is one of the most poisonous known herbs. It has been known to be used as a homicidal poison from long time in history. However this is rarely known to be used as suicidal poison. Poisoning with aconite is usually fatal and death commonly occurs due to arrhythmias and cardiotoxicity. We report a case of attempted suicidal poisoning by aconite where patient survived in spite of documented cardiotoxic effects of the poison
Super Chief Tomato Hybird
Super Chief is the F 1 hybrid resulting from a cross of SD 82- 106 x SD 85-048-1. Both parents were developed in the South Dakota fresh-market tomato breeding program. The hybrid was evaluated as 87-13
HFRAS : design of a high-density feature representation model for effective augmentation of satellite images
Efficiently extracting features from satellite images is crucial for classification and post-processing activities. Many feature representation models have been created for this purpose. However, most of them either increase computational complexity or decrease classification efficiency. The proposed model in this paper initially collects a set of available satellite images and represents them via a hybrid of long short-term memory (LSTM) and gated recurrent unit (GRU) features. These features are processed via an iterative genetic algorithm, identifying optimal augmentation methods for the extracted feature sets. To analyse the efficiency of this optimization process, we model an iterative fitness function that assists in incrementally improving the classification process. The fitness function uses an accuracy & precision-based feedback mechanism, which helps in tuning the hyperparameters of the proposed LSTM & GRU feature extraction process. The suggested model used 100 k images, 60% allocated for training and 20% each designated for validation and testing purposes. The proposed model can increase classification precision by 16.1% and accuracy by 17.1% compared to conventional augmentation strategies. The model also showcased incremental accuracy enhancements for an increasing number of training image sets.© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.fi=vertaisarvioitu|en=peerReviewed
A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions
Abstract Hyperspectral imaging is a technology that can be used to monitor plant responses to stress. Hyperspectral images have a full spectrum for each pixel in the image, 400–2500 nm in this case, giving detailed information about the spectral reflectance of the plant. Although this technology has been used in laboratory-based controlled lighting conditions for early detection of plant disease, the transfer of such technology to imaging plants in field conditions presents a number of challenges. These include problems caused by varying light levels and difficulties of separating the target plant from its background. Here we present an automated method that has been developed to segment raspberry plants from the background using a selected spectral ratio combined with edge detection. Graph theory was used to minimise a cost function to detect the continuous boundary between uninteresting plants and the area of interest. The method includes automatic detection of a known reflectance tile which was kept constantly within the field of view for all image scans. A method to split images containing rows of multiple raspberry plants into individual plants was also developed. Validation was carried out by comparison of plant height and density measurements with manually scored values. A reasonable correlation was found between these manual scores and measurements taken from the images (r2 = 0.75 for plant height). These preliminary steps are an essential requirement before detailed spectral analysis of the plants can be achieved
In-situ development of self-defensive antibacterial biomaterials: phenol-g-keratin-EC based bio-composites with characteristics for biomedical applications
Recently, the development of highly inspired biomaterials with multi-functional characteristics has gained considerable attention, especially in biomedical, and other health-related areas of the modern world. It is well-known that the lack of antibacterial potential has significantly limited biomaterials for many challenging applications such as infection free wound healing and/or tissue engineering etc. In this perspective, herein, a series of novel bio-composites with natural phenols as functional entities and keratin-EC as a base material were synthesised by laccase-assisted grafting. Subsequently, the resulting composites were removed from their respective casting surfaces, critically evaluated for their antibacterial and biocompatibility features and information is also given on their soil burial degradation profile. In-situ synthesised phenol-g-keratin-EC bio-composites possess strong anti-bacterial activity against Gram-positive and Gram-negative bacterial strains i.e., B. subtilis NCTC 3610, P. aeruginosa NCTC 10662, E. coli NTCT 10418 and S. aureus NCTC 6571. More specifically, 10HBA-g-keratin-EC and 20T-g-keratin-EC composites were 100% resistant to colonisation against all of the aforementioned bacterial strains, whereas, 15CA-g-keratin-EC and 15GA-g-keratin-EC showed almost negligible colonisation up to a variable extent. Moreover, at various phenolic concentrations used, the newly synthesised composites remained cytocompatible with human keratinocyte-like HaCaT, as an obvious cell ingrowth tendency was observed and indicated by the neutral red dye uptake assay. From the degradation point of view, an increase in the degradation rate was recorded during their soil burial analyses. Our investigations could encourage greater utilisation of natural materials to develop bio-composites with novel and sophisticated characteristics for potential applications
Infectious bovine keratoconjunctivitis caused by Moraxella bovis in water buffaloes
The present paper reports some clinical and therapeutic observations in natural infection of bovine keratoconjunctivitis caused by Moraxella bovis in water buffaloes (n = 15). The disease has been sparsely reported in water buffaloes. Varying degree of conjunctival or corneal oedema, hyperemia, blepharospasm, serous to mucopurulent ocular discharge, whitish opacity of cornea and partial to complete blindness were common clinical presentations in the affected animals. The infection was confirmed by culture and isolation of the samples collected from middle canthus of the affected eyes. Therapeutic management of the disease with two different antimicrobial protocols viz. parenteral administration of long acting oxytetracycline or topical administration of triple antibiotic (neomycin, polymyxin and bacitracin zinc) ophthalmic ointment resulted in little success. There was uveitis or secondary glaucoma and resultant blindness in the unresponsive eyes
OA13.01. Mind-Body Medicine Skills training for self-care and emotional well-being in medical students
Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken
Purpose: A reduction in the power of the crystalline lens during childhood is thought to be important in the emmetropization of the maturing eye. However, in humans and model organisms, little is known about the factors that determine the dimensions of the crystalline lens and in particular whether these different parameters (axial thickness, surface curvatures, equatorial diameter, and volume) are under a common source of control or regulated independently of other aspects of eye size and shape.Methods: Using chickens from a broiler-layer experimental cross as a model system, three-dimensional magnetic resonance imaging (MRI) scans were obtained at 115-mu m isotropic resolution for one eye of 501 individuals aged 3-weeks old. After fixation with paraformaldehyde, the excised eyes were scanned overnight (16 h) in groups of 16 arranged in a 2x2x4 array. Lens dimensions were calculated from each image by fitting a three-dimensional mesh model to the lens, using the semi-automated analysis program mri3dX. The lens dimensions were compared to measures of eye and body size obtained in vivo using techniques that included keratometry and A-scan ultrasonography.Results: A striking finding was that axial lens thickness measured using ex vivo MRI was only weakly correlated with lens thickness measured in vivo by ultrasonography (r=0.19, p<0.001). In addition, the MRI lens thickness estimates had a lower mean value and much higher variance. Indeed, about one-third of crystalline lenses showed a kidney-shaped appearance instead of the typical biconvex shape. Since repeat MRI scans of the same eye showed a high degree of reproducibility for the scanning and mri3dX analysis steps (the correlation in repeat lens thickness measurements was r=0.95, p<0.001) and a recent report has shown that paraformaldehyde fixation induces a loss of water from the human crystalline lens, it is likely that the tissue fixation step caused a variable degree of shrinkage and a change in shape to the lenses examined here. Despite this serious source of imprecision, we found significant correlations between lens volume and eye/body size (p<0.001) and between lens equatorial diameter and eye/body size (p<0.001) in these chickens.Conclusions: Our results suggest that certain aspects of lens size (specifically, lens volume and equatorial diameter) are controlled by factors that also regulate the size of the eye and body (presumably, predominantly genetic factors). However, since it has been shown previously that axial lens thickness is regulated almost independently of eye and body size, these results suggest that different systems might operate to control lens volume/diameter and lens thickness in normal chickens.</p
- …
