16 research outputs found

    A Redox-Active Cascade Precursor: Isolation of a Zwitterionic Triphenylphosphonio–Hydrazyl Radical and an Indazolo–Indazole Derivative

    No full text
    A redox-active [ML] unit (M = Co<sup>II</sup> and Mn<sup>II</sup>; LH<sub>2</sub> = <i>N</i>′-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)­benzohydrazide) defined as a cascade precursor that undergoes a multicomponent redox reaction comprising of a C–N bond formation, tautomerization, oxidation, C–C coupling, demetalation, and affording 6,14-dibenzoylbenzo­[<i>f</i>]­benzo­[5,6]­indazolo­[3<i>a</i>,3-<i>c</i>]­indazole-5,8,13,16-tetraone (<sup>Ind</sup>L<sub>2</sub>) is reported. Conversion of LH<sub>2</sub> → <sup>Ind</sup>L<sub>2</sub> in air is overall a (6H<sup>+</sup>+6e) oxidation reaction, and it opens a route for the syntheses of bioactive diarylindazolo­[3<i>a</i>,3-<i>c</i>]­indazole derivatives. The reaction occurs via a radical coupling reaction, and the radical intermediate was isolated as a triphenylphosphonio adduct. In presence of PPh<sub>3</sub> the [ML] unit promotes a reaction that involves a C–P bond formation, tautomerization, and oxidation to yield a stable zwitterionic triphenylphosphonio-hydrazyl radical (<sup>PPh3</sup>L<sup>±•</sup>). Conversion of LH<sub>2</sub> → <sup>PPh3</sup>L<sup>±•</sup> is a (3H<sup>+</sup>+3e) oxidation reaction. To authenticate the [ML] unit, in addition to the <sup>Ind</sup>L<sub>2</sub>, a zinc­(II) complex, [(L<sub>3</sub>)­Zn<sup>II</sup>(H<sub>2</sub>O)­Cl]·2MeOH (<b>1</b>·2MeOH), was successfully isolated (L<sub>3</sub>H = a pyridazine derivative of 1,4 naphthoquinone) from a reaction of LH<sub>2</sub> with hydrated ZnCl<sub>2</sub>. Conversion of 3LH<sub>2</sub> → <b>1</b> is also a multicomponent (6H<sup>+</sup>+6e) oxidation reaction promoted by zinc­(II) ion via a radical intermediate. Facile oxidation of [L<sup>2–</sup>] to [L<sup>•–</sup>] that was considered as an intermediate of these conversions was confirmed by isolating a 1,4 naphthoquinone-benzhydrazyl radical (LH<sup>•</sup>) complex, [(LH<sup>•</sup>)­Zn<sup>II</sup>(H<sub>2</sub>O)­Cl<sub>2</sub>] (<b>2H</b><sup>•</sup>). The intermediates of LH<sub>2</sub> → <sup>Ind</sup>L<sub>2</sub>, LH<sub>2</sub> → <sup>PPh3</sup>L<sup>±•</sup>, and 3LH<sub>2</sub> → <b>1</b> conversions were analyzed by electrospray ionization mass spectroscopy. The molecular and electronic structures of <sup>PPh3</sup>L<sup>±•</sup>, <sup>Ind</sup>L<sub>2</sub>, <b>1</b>·2MeOH, and <b>2H</b><sup>•</sup> were confirmed by single-crystal X-ray crystallography, electron paramagnetic resonance spectroscopy, and density functional theory calculations

    Ruthenium, Rhodium, Osmium, and Iridium Complexes of Osazones (Osazones = Bis-Arylhydrazones of Glyoxal): Radical versus Nonradical States

    No full text
    Phenyl osazone (L<sup>NHPh</sup>H<sub>2</sub>), phenyl osazone anion radical (L<sup>NHPh</sup>H<sub>2</sub><sup>•–</sup>), benzoyl osazone (L<sup>NHCOPh</sup>H<sub>2</sub>), benzoyl osazone anion radical (L<sup>NHCOPh</sup>H<sub>2</sub><sup>•–</sup>), benzoyl osazone monoanion (L<sup>NCOPh</sup>HMe<sup>–</sup>), and anilido osazone (L<sup>NHCONHPh</sup>HMe) complexes of ruthenium, osmium, rhodium, and iridium of the types <i>trans</i>-[Os­(L<sup>NHPh</sup>H<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans</i>-[Ir­(L<sup>NHPh</sup>H<sub>2</sub><sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>4</b>), <i>trans</i>-[Ru­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>), <i>trans</i>-[Os­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>6</b>), <i>trans</i>- [Rh­(L<sup>NHCOPh</sup>H<sub>2</sub><sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>7</b>), <i>trans</i>-[Rh­(L<sup>NHCOPh</sup>HMe<sup>–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl]­PF<sub>6</sub> ([<b>8</b>]­PF<sub>6</sub>), and <i>trans</i>-[Ru­(L<sup>NHCONHPh</sup>HMe)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl ([<b>9</b>]­Cl) have been isolated and compared (osazones = bis-arylhydrazones of glyoxal). The complexes have been characterized by elemental analyses and IR, mass, and <sup>1</sup>H NMR spectra; in addition, single-crystal X-ray structure determinations of <b>5</b>, <b>6</b>, [<b>8</b>]­PF<sub>6</sub>, and [<b>9</b>]Cl have been carried out. EPR spectra of <b>4</b> and <b>7</b> reveal that in the solid state they are osazone anion radical complexes (<b>4</b>, <i>g</i><sub>av</sub> = 1.989; <b>7</b>, 2.028 (Δ<i>g</i> = 0.103)), while in solution the contribution of the M­(II) ions is greater (<b>4</b>, <i>g</i><sub>av</sub> = 2.052 (Δ<i>g</i> = 0.189); <b>7</b>, <i>g</i><sub>av</sub> = 2.102 (Δ<i>g</i> = 0.238)). Mulliken spin densities on L<sup>NHPh</sup>H<sub>2</sub> and L<sup>NHCOPh</sup>H<sub>2</sub> obtained from unrestricted density functional theory (DFT) calculations on <i>trans</i>-[Ir­(L<sup>NHPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>4</b><sup>Me</sup>) and <i>trans</i>-[Rh­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>7</b><sup>Me</sup>) in the gas phase with doublet spin states authenticated the existence of L<sup>NHPh</sup>H<sub>2</sub><sup>•–</sup> and L<sup>NHCOPh</sup>H<sub>2</sub><sup>•–</sup> anion radicals in <b>4</b> and <b>7</b> coordinated to iridium­(III) and rhodium­(III) ions. DFT calculations on <i>trans</i>-[Os­(L<sup>NHPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), <i>trans</i>-[Os­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>6</b><sup>Me</sup>), and <i>trans</i>-[Ru­(L<sup>NHCONHPh</sup>HMe<sup>–</sup>)­(PMe<sub>3</sub>)<sub>2</sub>Cl] [<b>9</b><sup>Me</sup>]<sup>+</sup> with singlet spin states established that the closed-shell singlet state (CSS) solutions of <b>3</b>, <b>5</b>, <b>6</b>, and [<b>9</b>]­Cl are stable. The lower value of M<sup>III</sup>/M<sup>II</sup> reduction potentials and lower energy absorption bands corroborate the higher extent of mixing of d orbitals with the π* orbital in the case of <b>3</b> and <b>6</b>. Time-dependent (TD) DFT calculations elucidated the MLCT as the origin of the lower energy absorption bands of <b>3</b>, <b>5</b>, and <b>6</b> and π → π* as the origin of transitions in <b>4</b> and <b>7</b>

    Ruthenium, Rhodium, Osmium, and Iridium Complexes of Osazones (Osazones = Bis-Arylhydrazones of Glyoxal): Radical versus Nonradical States

    No full text
    Phenyl osazone (L<sup>NHPh</sup>H<sub>2</sub>), phenyl osazone anion radical (L<sup>NHPh</sup>H<sub>2</sub><sup>•–</sup>), benzoyl osazone (L<sup>NHCOPh</sup>H<sub>2</sub>), benzoyl osazone anion radical (L<sup>NHCOPh</sup>H<sub>2</sub><sup>•–</sup>), benzoyl osazone monoanion (L<sup>NCOPh</sup>HMe<sup>–</sup>), and anilido osazone (L<sup>NHCONHPh</sup>HMe) complexes of ruthenium, osmium, rhodium, and iridium of the types <i>trans</i>-[Os­(L<sup>NHPh</sup>H<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans</i>-[Ir­(L<sup>NHPh</sup>H<sub>2</sub><sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>4</b>), <i>trans</i>-[Ru­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>), <i>trans</i>-[Os­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>6</b>), <i>trans</i>- [Rh­(L<sup>NHCOPh</sup>H<sub>2</sub><sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>7</b>), <i>trans</i>-[Rh­(L<sup>NHCOPh</sup>HMe<sup>–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl]­PF<sub>6</sub> ([<b>8</b>]­PF<sub>6</sub>), and <i>trans</i>-[Ru­(L<sup>NHCONHPh</sup>HMe)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl ([<b>9</b>]­Cl) have been isolated and compared (osazones = bis-arylhydrazones of glyoxal). The complexes have been characterized by elemental analyses and IR, mass, and <sup>1</sup>H NMR spectra; in addition, single-crystal X-ray structure determinations of <b>5</b>, <b>6</b>, [<b>8</b>]­PF<sub>6</sub>, and [<b>9</b>]Cl have been carried out. EPR spectra of <b>4</b> and <b>7</b> reveal that in the solid state they are osazone anion radical complexes (<b>4</b>, <i>g</i><sub>av</sub> = 1.989; <b>7</b>, 2.028 (Δ<i>g</i> = 0.103)), while in solution the contribution of the M­(II) ions is greater (<b>4</b>, <i>g</i><sub>av</sub> = 2.052 (Δ<i>g</i> = 0.189); <b>7</b>, <i>g</i><sub>av</sub> = 2.102 (Δ<i>g</i> = 0.238)). Mulliken spin densities on L<sup>NHPh</sup>H<sub>2</sub> and L<sup>NHCOPh</sup>H<sub>2</sub> obtained from unrestricted density functional theory (DFT) calculations on <i>trans</i>-[Ir­(L<sup>NHPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>4</b><sup>Me</sup>) and <i>trans</i>-[Rh­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>7</b><sup>Me</sup>) in the gas phase with doublet spin states authenticated the existence of L<sup>NHPh</sup>H<sub>2</sub><sup>•–</sup> and L<sup>NHCOPh</sup>H<sub>2</sub><sup>•–</sup> anion radicals in <b>4</b> and <b>7</b> coordinated to iridium­(III) and rhodium­(III) ions. DFT calculations on <i>trans</i>-[Os­(L<sup>NHPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), <i>trans</i>-[Os­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>6</b><sup>Me</sup>), and <i>trans</i>-[Ru­(L<sup>NHCONHPh</sup>HMe<sup>–</sup>)­(PMe<sub>3</sub>)<sub>2</sub>Cl] [<b>9</b><sup>Me</sup>]<sup>+</sup> with singlet spin states established that the closed-shell singlet state (CSS) solutions of <b>3</b>, <b>5</b>, <b>6</b>, and [<b>9</b>]­Cl are stable. The lower value of M<sup>III</sup>/M<sup>II</sup> reduction potentials and lower energy absorption bands corroborate the higher extent of mixing of d orbitals with the π* orbital in the case of <b>3</b> and <b>6</b>. Time-dependent (TD) DFT calculations elucidated the MLCT as the origin of the lower energy absorption bands of <b>3</b>, <b>5</b>, and <b>6</b> and π → π* as the origin of transitions in <b>4</b> and <b>7</b>

    Tris(2,2′-azobispyridine) Complexes of Copper(II): X‑ray Structures, Reactivities, and the Radical Nonradical Bis(ligand) Analogues

    No full text
    Tris­(abpy) complexes of types <i>mer</i>-[Cu<sup>II</sup>(abpy)<sub>3</sub>]­[PF<sub>6</sub>]<sub>2</sub> (<i>mer</i>-<b>1</b><sup>2+</sup>[PF<sub>6</sub><sup>–</sup>]<sub>2</sub>) and ctc-[Cu<sup>II</sup>(abpy)<sub>2</sub>(bpy)]­[PF<sub>6</sub>]<sub>2</sub> (ctc-<b>2</b><sup>2+</sup>[PF<sub>6</sub><sup>–</sup>]<sub>2</sub>) were successfully isolated and characterized by spectra and single-crystal X-ray structure determinations (abpy = 2,2′-azobispyridine; bpy = 2,2′-bipyridine). Reactions of <i>mer</i>-<b>1</b><sup>2+</sup> and ctc-<b>2</b><sup>2+</sup> ions with catechol, <i>o</i>-aminophenol, <i>p-</i>phenylenediamine, and diphenylamine (Ph–NH–Ph) in 2:1 molar ratio afford [Cu<sup>I</sup>(abpy)<sub>2</sub>]<sup>+</sup> (<b>3</b><sup><b>+</b></sup>) and corresponding quinone derivatives. The similar reactions of [Cu<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup> and [Cu<sup>II</sup>(phen)<sub>3</sub>]<sup>2+</sup> with these substrates yielding [Cu<sup>I</sup>(bpy)<sub>2</sub>]<sup>+</sup> and [Cu<sup>I</sup>(phen)<sub>2</sub>]<sup>+</sup> imply that these complexes undergo <i>reduction-induced ligand dissociation</i> reactions (phen = 1,10-phenanthroline). The average −NN– lengths in <i>mer</i>-<b>1</b><sup>2+</sup>[PF<sub>6</sub><sup>–</sup>]<sub>2</sub> and ctc-<b>2</b><sup>2+</sup>[PF<sub>6</sub><sup>–</sup>]<sub>2</sub> are 1.248(4), while that in <b>3</b><sup>+</sup>[PF<sub>6</sub><sup>–</sup>]·2CH<sub>2</sub>Cl<sub>2</sub> is relatively longer, 1.275(2) Å, due to d<sub>Cu</sub> → π<sub>azo</sub>* back bonding. In cyclic voltammetry, <i>mer</i>-<b>1</b><sup>2+</sup> exhibits one quasi-reversible wave at −0.42 V due to Cu<sup>II</sup>/Cu<sup>I</sup> and abpy/abpy<sup>•–</sup> couples and two reversible waves at −0.90 and −1.28 V due to abpy/abpy<sup>•–</sup> couple, while those of ctc-<b>2</b><sup>2+</sup> ion appear at −0.44, −0.86, and −1.10 V versus Fc<sup>+</sup>/Fc couple. The anodic <b>3</b><sup>2+</sup>/<b>3</b><sup>+</sup> and the cathodic <b>3</b><sup>+</sup>/<b>3</b> redox waves at +0.33 and −0.40 V are reversible. The electron paramagnetic resonance spectra and density functional theory (DFT) calculations authenticated the existence of abpy anion radical (abpy<sup>•–</sup>) in <b>3</b>, which is defined as a hybrid state of [Cu<sup>I</sup>(abpy<sup>0.5•–</sup>)­(abpy<sup>0.5•–</sup>)] and [Cu<sup>II</sup>(abpy<sup>•–</sup>)­(abpy<sup>•–</sup>)] states. <b>3</b><sup>2+</sup> ion is a neutral abpy complex of copper­(II) of type [Cu<sup>II</sup>(abpy)<sub>2</sub>]<sup>2+</sup>. <b>3</b> exhibits a near-IR absorption band at 2400–3000 nm because of the intervalence ligand-to-ligand charge transfer, elucidated by time-dependent DFT calculations in CH<sub>2</sub>Cl<sub>2</sub>

    Cobalt Ion Promoted Redox Cascade: A Route to Spiro Oxazine-Oxazepine Derivatives and a Dinuclear Cobalt(III) Complex of an <i>N</i>‑(1,4-Naphthoquinone)‑<i>o</i>‑aminophenol Derivative

    No full text
    The study discloses that the redox activity of <i>N</i>-(1,4-naphthoquinone)-<i>o</i>-aminophenol derivatives (L<sup>R</sup>H<sub>2</sub>) containing a (phenol)-NH-(1,4-naphthoquinone) fragment is notably different from that of a (phenol)-NH-(phenol) precursor. The former is a platform for a redox cascade. L<sup>R</sup>H<sub>2</sub> is redox noninnocent and exists in Cat-N-(1,4-naphthoquinone)(2−) (L<sup>R 2–</sup>) and SQ-N-(1,4-naphthoquinone) (L<sup>R •–</sup>) states in the complexes. Reactions of L<sup>R</sup>H<sub>2</sub> with cobalt­(II) salts in MeOH in air promote a cascade affording spiro oxazine-oxazepine derivatives (<sup>OX</sup>L<sup>R</sup>) in good yields, when R = H, Me, <sup>t</sup>Bu. Spiro oxazine-oxazepine derivatives are bioactive, and such a molecule has so far not been isolated by a schematic route. In this context this cascade is significant. Dimerization of L<sup>R</sup>H<sub>2</sub> → <sup>OX</sup>L<sup>R</sup> in MeOH is a (6H<sup>+</sup> + 6e) oxidation reaction and is composed of formations of four covalent bonds and 6-exo-trig and 7-endo-trig cyclization based on C–O coupling reactions, where MeOH is the source of a proton and the ester function. It was established that the active cascade precursor is [(L<sup>Me •–</sup>)­Co<sup>III</sup>Cl<sub>2</sub>] (<b>A</b>). Notably, formation of a spiro derivative was not detected in CH<sub>3</sub>CN and the reaction ends up furnishing <b>A</b>. The route of the reaction is tunable by R, when R = NO<sub>2</sub>, it is a (2e + 4H<sup>+</sup>) oxidation reaction affording a dinuclear L<sup>R 2–</sup> complex of cobalt­(III) of the type [(L<sup>NO2 2–</sup>)<sub>2</sub>Co<sup>III</sup><sub>2</sub>(OMe)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] (<b>1</b>) in good yields. No cascade occurs with zinc­(II) ion even in MeOH and produces a L<sup>Me •–</sup> complex of type [(L<sup>Me •–</sup>)­Zn<sup>II</sup>Cl<sub>2</sub>] (<b>2</b>). The intermediate <b>A</b> and <b>2</b> exhibit strong EPR signals at <i>g</i> = 2.008 and 1.999, confrming the existence of L<sup>Me •–</sup> coordinated to low-spin cobalt­(III) and zinc­(II) ions. The intermediates of L<sup>R</sup>H<sub>2</sub> → <sup>OX</sup>L<sup>R</sup> conversion were analyzed by ESI mass spectrometry. The molecular geometries of <sup>OX</sup>L<sup>R</sup> and <b>1</b> were confirmed by X-ray crystallography, and the spectral features were elucidated by TD DFT calculations

    Oxidovanadium Catechol Complexes: Radical versus Non-Radical States and Redox Series

    No full text
    A new family of oxidovanadium complexes, [(L<sub>1</sub><sup>R</sup>)­(VO)­(L<sup>R<sup>′</sup></sup>)] (R = H, R′ = H, <b>1</b>; R = H, R′ = -CMe<sub>3</sub>, <b>2</b>; R = H, R′ = Me, <b>3</b>; R = -CMe<sub>3</sub>, R′ = H, <b>4</b> and R = -CMe<sub>3</sub>, R′ = -CMe<sub>3</sub>, <b>5</b>), incorporating tridentate L<sub>1</sub><sup>R</sup>H ligands (L<sub>1</sub><sup>R</sup>H = 2,4-di<i>-</i>R-6-{(2-(pyridin-2-yl)­hydrazono)­methyl}­phenol) and substituted catechols (L<sup>R<sup>′</sup></sup>H<sub>2</sub>) was substantiated. The V–O<sub>phenolato</sub> (cis to VO), V–O<sub>CAT</sub> (cis to VO) and V–O<sub>CAT</sub> (trans to VO) lengths span the ranges, 1.894(2)–1.910(2), 1.868(2)–1.887(2), and 2.120(2)–2.180(2) Å. The metrical oxidation states (MOS) of the catechols in <b>1</b>–<b>5</b> are fractional and vary from −1.43 to −1.60. The <sup>51</sup>V isotropic chemical shifts of solids and solutions of <b>1</b>–<b>5</b> are deshielded (<sup>51</sup>V CP MAS: −19.8 to +248.6; DMSO-d<sub>6</sub>: +173.9 to +414.55 ppm). The closed shell singlet (CSS) solutions of <b>1</b>–<b>5</b> are unstable due to open shell singlet (OSS) perturbations. The ground electronic states of <b>1</b>–<b>5</b> are defined by the resonance contribution of the catecholates (L<sup>R<sup>′</sup></sup><sub>CAT</sub><sup>2–</sup>) and L<sup>R<sup>′</sup></sup><sub>SQ</sub><sup>–•</sup> coordinated to the [VO]<sup>3+</sup> and [VO]<sup>2+</sup> ions. <b>1</b>–<b>5</b> are reversibly reducible by one electron at −(0.58–0.87) V, referenced vs ferrocenium/ferrocene, to VO<sup>2+</sup> complexes, [(L<sub>1</sub><sup>R–</sup>)­(VO<sup>2+</sup>)­(L<sup>R<sup>′</sup></sup><sub>CAT</sub><sup>2–</sup>)]<sup>−</sup> [<b>1</b>–<b>5</b>]<sup>−</sup>. <b>1</b>–<b>5</b> display another quasi-reversible or irreversible reduction wave at −(0.80–1.32) V due to the formation of hydrazone anion radical (L<sub>1</sub><sup>R2–•</sup>) complexes, [(L<sub>1</sub><sup>R2–•</sup>)­(VO<sup>2+</sup>)­(L<sup>R<sup>′</sup></sup><sub>CAT</sub><sup>2–</sup>)]<sup>2–</sup>, [<b>1</b>–<b>5</b>]<sup>2–</sup>, with <i>S</i> = 1 authenticated by the unrestricted density functional theory (DFT) calculations on <b>1</b><sup>2–</sup> and <b>3</b><sup>2–</sup> ions. Frozen glasses electron paramagnetic resonance (EPR) spectra of [<b>1</b>–<b>5</b>]<sup>−</sup> ions [e.g., for <b>2</b>, <i>g</i><sub>||</sub> = 1.948, <i>g</i><sub>⊥</sub> = 1.979, <i>A</i><sub>||</sub> = 164, <i>A</i><sub>⊥</sub> = 60] affirmed that [<b>1</b>–<b>5</b>]<sup>−</sup> ions are the [VO]<sup>2+</sup> complexes of L<sup>R′</sup><sub>CAT</sub><sup>2–</sup>. Spectro-electrochemical measurements and time-dependent DFT (TD DFT) calculations on <b>1</b>, <b>3</b>, <b>1</b><sup>–</sup>, <b>3</b><sup>–</sup>, and <b>1</b><sup>2–</sup> disclosed that the near infrared (NIR) absorption bands of <b>1</b>–<b>5</b> at 800 nm are due to the CSS-OSS metal to ligand charge transfer which are red-shifted in the solid state and disappear in [<b>1</b>–<b>5</b>]<sup>−</sup> and [<b>1</b>–<b>5</b>]<sup>2–</sup> ions

    Oxidovanadium Catechol Complexes: Radical versus Non-Radical States and Redox Series

    No full text
    A new family of oxidovanadium complexes, [(L<sub>1</sub><sup>R</sup>)­(VO)­(L<sup>R<sup>′</sup></sup>)] (R = H, R′ = H, <b>1</b>; R = H, R′ = -CMe<sub>3</sub>, <b>2</b>; R = H, R′ = Me, <b>3</b>; R = -CMe<sub>3</sub>, R′ = H, <b>4</b> and R = -CMe<sub>3</sub>, R′ = -CMe<sub>3</sub>, <b>5</b>), incorporating tridentate L<sub>1</sub><sup>R</sup>H ligands (L<sub>1</sub><sup>R</sup>H = 2,4-di<i>-</i>R-6-{(2-(pyridin-2-yl)­hydrazono)­methyl}­phenol) and substituted catechols (L<sup>R<sup>′</sup></sup>H<sub>2</sub>) was substantiated. The V–O<sub>phenolato</sub> (cis to VO), V–O<sub>CAT</sub> (cis to VO) and V–O<sub>CAT</sub> (trans to VO) lengths span the ranges, 1.894(2)–1.910(2), 1.868(2)–1.887(2), and 2.120(2)–2.180(2) Å. The metrical oxidation states (MOS) of the catechols in <b>1</b>–<b>5</b> are fractional and vary from −1.43 to −1.60. The <sup>51</sup>V isotropic chemical shifts of solids and solutions of <b>1</b>–<b>5</b> are deshielded (<sup>51</sup>V CP MAS: −19.8 to +248.6; DMSO-d<sub>6</sub>: +173.9 to +414.55 ppm). The closed shell singlet (CSS) solutions of <b>1</b>–<b>5</b> are unstable due to open shell singlet (OSS) perturbations. The ground electronic states of <b>1</b>–<b>5</b> are defined by the resonance contribution of the catecholates (L<sup>R<sup>′</sup></sup><sub>CAT</sub><sup>2–</sup>) and L<sup>R<sup>′</sup></sup><sub>SQ</sub><sup>–•</sup> coordinated to the [VO]<sup>3+</sup> and [VO]<sup>2+</sup> ions. <b>1</b>–<b>5</b> are reversibly reducible by one electron at −(0.58–0.87) V, referenced vs ferrocenium/ferrocene, to VO<sup>2+</sup> complexes, [(L<sub>1</sub><sup>R–</sup>)­(VO<sup>2+</sup>)­(L<sup>R<sup>′</sup></sup><sub>CAT</sub><sup>2–</sup>)]<sup>−</sup> [<b>1</b>–<b>5</b>]<sup>−</sup>. <b>1</b>–<b>5</b> display another quasi-reversible or irreversible reduction wave at −(0.80–1.32) V due to the formation of hydrazone anion radical (L<sub>1</sub><sup>R2–•</sup>) complexes, [(L<sub>1</sub><sup>R2–•</sup>)­(VO<sup>2+</sup>)­(L<sup>R<sup>′</sup></sup><sub>CAT</sub><sup>2–</sup>)]<sup>2–</sup>, [<b>1</b>–<b>5</b>]<sup>2–</sup>, with <i>S</i> = 1 authenticated by the unrestricted density functional theory (DFT) calculations on <b>1</b><sup>2–</sup> and <b>3</b><sup>2–</sup> ions. Frozen glasses electron paramagnetic resonance (EPR) spectra of [<b>1</b>–<b>5</b>]<sup>−</sup> ions [e.g., for <b>2</b>, <i>g</i><sub>||</sub> = 1.948, <i>g</i><sub>⊥</sub> = 1.979, <i>A</i><sub>||</sub> = 164, <i>A</i><sub>⊥</sub> = 60] affirmed that [<b>1</b>–<b>5</b>]<sup>−</sup> ions are the [VO]<sup>2+</sup> complexes of L<sup>R′</sup><sub>CAT</sub><sup>2–</sup>. Spectro-electrochemical measurements and time-dependent DFT (TD DFT) calculations on <b>1</b>, <b>3</b>, <b>1</b><sup>–</sup>, <b>3</b><sup>–</sup>, and <b>1</b><sup>2–</sup> disclosed that the near infrared (NIR) absorption bands of <b>1</b>–<b>5</b> at 800 nm are due to the CSS-OSS metal to ligand charge transfer which are red-shifted in the solid state and disappear in [<b>1</b>–<b>5</b>]<sup>−</sup> and [<b>1</b>–<b>5</b>]<sup>2–</sup> ions

    Radical and Non-Radical States of the [Os(PIQ)] Core (PIQ = 9,10-Phenanthreneiminoquinone): Iminosemiquinone to Iminoquinone Conversion Promoted <i>o</i>‑Metalation Reaction

    No full text
    The coordination and redox chemistry of 9,10-phenanthreneiminoquinone (PIQ) with osmium ion authenticating the [Os<sup>II</sup>(PIQ<sup>•–</sup>)], [Os<sup>III</sup>(PIQ<sup>•–</sup>)], [Os<sup>III</sup>(C,N-PIQ)], [Os<sup>III</sup>(PIQ)], and [Os<sup>III</sup>(PIQ<sup>2–</sup>) ] states of the [Os­(PIQ)] core in the complexes of types <i>trans-</i>[Os<sup>II</sup>(PIQ<sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)­Br] (<b>1</b>), <i>trans-</i>[Os<sup>III</sup>(PIQ<sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>2</b>), <i>trans-</i>[Os<sup>III</sup>(C,N-PIQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]·2CH<sub>2</sub>Cl<sub>2</sub> (<b>3</b>·2CH<sub>2</sub>Cl<sub>2</sub>), <i>trans-</i>[Os<sup>III</sup>(C,N-PIQ<sup>Br</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]·2CH<sub>2</sub>Cl<sub>2</sub> (<b>4</b>·2CH<sub>2</sub>Cl<sub>2</sub>), <i>trans-</i>[Os<sup>III</sup>(C,N-PIQ<sup>Cl2</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>6</b>), <i>trans-</i>[Os<sup>III</sup>(PIQ<sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup>1/2I<sub>3</sub><sup>–</sup>1/2Br<sup>–</sup> (<b>1</b><sup>+</sup>1/2I<sub>3</sub><sup>–</sup>1/2Br<sup>–</sup>), [Os<sup>III</sup>(PIQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>2</b><sup>+</sup>), and [Os<sup>III</sup>(PIQ<sup>2–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>−</sup> (<b>2</b><sup>–</sup>) are reported (PIQ<sup>•–</sup> = 9,10-phenanthreneiminosemiquinonate anion radical; C,N-PIQ = ortho-metalated PIQ, C,N-PIQ<sup>Br</sup> = ortho-metalated 4-bromo PIQ, and C,N-PIQ<sup>Cl2</sup> = ortho-metalated 3,4-dichloro PIQ). Reduction of PIQ by [Os<sup>II</sup>(PPh<sub>3</sub>)<sub>3</sub>(H)­(CO)­Br] affords <b>1</b>, while the reaction of PIQ with [Os<sup>II</sup>(PPh<sub>3</sub>)<sub>3</sub>Br<sub>2</sub>] furnishes <b>2</b>. Oxidation of <b>1</b> with I<sub>2</sub> affords <b>1</b><sup>+</sup>1/2I<sub>3</sub><sup>–</sup>1/2Br<sup>–</sup>, while the similar reactions of <b>2</b> with X<sub>2</sub> (X = I, Br, Cl) produce the ortho-metalated derivatives <b>3</b>·2CH<sub>2</sub>Cl<sub>2</sub>, <b>4</b>·2CH<sub>2</sub>Cl<sub>2</sub>, and <b>6</b>. PIQ and PIQ<sup>2–</sup> complexes of osmium­(III), <b>2</b><sup><b>+</b></sup> and <b>2</b><sup><b>‑</b></sup>, are generated by constant-potential electrolysis. However, <b>2</b><sup>+</sup> ion is unstable in solution and slowly converts to <b>3</b> and partially hydrolyzes to <i>trans-</i>[Os<sup>III</sup>(PQ<sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>2</b><sub><b>PQ</b></sub>), a PQ<sup>•–</sup> analogue of <b>2</b>. Conversion of <b>2</b><sup>+</sup> → <b>3</b> in solution excludes the formation of aryl halide as an intermediate for this unique ortho-metalation reaction at 295 K, where PIQ acts as a redox-noninnocent ambidentate ligand. In the complexes, the PIQ<sup>•–</sup> state where the atomic spin is more localized on the nitrogen atom is stable and is more abundant. The reaction of <b>2</b><sub><b>PQ</b></sub>, with I<sub>2</sub> does not promote any ortho-metalation reaction and yields a PQ complex of type <i>trans-</i>[Os<sup>III</sup>(PQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup>I<sub>5</sub><sup>–</sup>·2CH<sub>2</sub>Cl<sub>2</sub> (<b>5</b><sup>+</sup>I<sub>5</sub><sup>–</sup>·2CH<sub>2</sub>Cl<sub>2</sub>). The molecular and electronic structures of <b>1</b>–<b>4</b>, <b>6</b>, <b>1</b><sup>+</sup>, and <b>5</b><sup>+</sup> were established by different spectra, single-crystal X-ray bond parameters, cyclic voltammetry, and DFT calculations

    Molecular and Electronic Structures of Ruthenium Complexes Containing an ONS-Coordinated Open-Shell π Radical and an Oxidative Aromatic Ring Cleavage Reaction

    No full text
    The coordination chemistry of 2,4-di-<i>tert</i>-butyl-6-[(2-mercaptophenyl)­amino]­phenol (L<sub>ONS</sub>H<sub>3</sub>), which was isolated as a diaryl disulfide form, (L<sub>ONS</sub>H<sub>2</sub>)<sub>2</sub>, with a Ru ion is disclosed. It was established that the trianionic L<sub>ONS</sub><sup>3–</sup> is redox-noninnocent and undergoes oxidation to either a closed-shell singlet (CSS), L<sub>ONS</sub><sup>–</sup>, or an open-shell π-radical state, L<sub>ONS</sub><sup>•2–</sup>, and the reactivities of the [Ru<sup>II</sup>(L<sub>ONS</sub><sup>•2–</sup>)] and [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)] states are different. The reaction of (L<sub>ONS</sub>H<sub>2</sub>)<sub>2</sub> with [Ru­(PPh<sub>3</sub>)<sub>3</sub>Cl<sub>2</sub>] in toluene in the presence of PPh<sub>3</sub> affords a ruthenium complex of the type <i>trans</i>-[Ru­(L<sub>ONS</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>1</b>), while the similar reaction with [Ru­(PPh<sub>3</sub>)<sub>3</sub>(H)­(CO)­Cl] yields a L<sub>ONS</sub><sup>•2–</sup> complex of ruthenium­(II) of the type <i>trans</i>-[Ru<sup>II</sup>(L<sub>ONS</sub><sup>•2–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)] (<b>2</b>). <b>1</b> is a resonance hybrid of the [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)­Cl] and [Ru<sup>III</sup>(L<sub>ONS</sub><sup>•2–</sup>)­Cl] states. It is established that <b>2</b> incorporating an open-shell π-radical state, [Ru<sup>II</sup>(L<sub>ONS</sub><sup>•2–</sup>)­(CO)], reacts with an in situ generated superoxide ion and promotes an oxidative aromatic ring cleavage reaction, yielding a α-<i>N</i>-arylimino-ω-ketocarboxylate (L<sub>NS</sub><sup>2–</sup>) complex of the type [Ru<sup>II</sup>(L<sub>NS</sub><sup>2–</sup>)­(PPh<sub>3</sub>)­(CO)]<sub>2</sub> (<b>4</b>), while <b>1</b> having a CSS state, [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)­Cl], is inert in similar conditions. Notably, <b>2</b> does not react with O<sub>2</sub> molecule but reacts with KO<sub>2</sub> in the presence of excess PPh<sub>3</sub>, affording <b>4</b>. The redox reaction of (L<sub>ONS</sub>H<sub>2</sub>)<sub>2</sub> with [Ru­(PPh<sub>3</sub>)<sub>3</sub>Cl<sub>2</sub>] in ethanol in air is different, leading to the oxidation of L<sub>ONS</sub> to a quinone sulfoxide derivative (L<sub>ONSO</sub><sup>0</sup>) as in <i>cis</i>-[Ru<sup>II</sup>(L<sub>ONSO</sub><sup>0</sup>)­(PPh<sub>3</sub>)­Cl<sub>2</sub>] (<b>3</b>), via <b>1</b> as an intermediate. The molecular and electronic structures of <b>1</b>–<b>4</b> were established by single-crystal X-ray crystallography, electron paramagnetic resonance spectroscopy, electrochemical measurements, and density functional theory calculations. <b>1</b><sup>+</sup> is a resonance hybrid of [Ru<sup>III</sup>(L<sub>ONS</sub><sup>–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl ↔ Ru<sup>IV</sup>(L<sub>ONS</sub><sup>•2–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> states, <b>2</b><sup>–</sup> is a L<sub>ONS</sub><sup>3–</sup> complex of ruthenium­(II), [Ru<sup>II</sup>(L<sub>ONS</sub><sup>3–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)]<sup>−</sup>, and <b>2</b><sup>+</sup> is a ruthenium­(II) complex of L<sub>ONS</sub><sup>–</sup> of the type [Ru<sup>II</sup>(L<sub>ONS</sub><sup>–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>(CO)]<sup>+</sup>, where 35% diradical character of the L<sub>ONS</sub><sup>–</sup> ligand was predicted

    Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]<sup>6/7</sup> Derivatives

    Get PDF
    A new family of organometallics of ruthenium­(II/III), osmium­(II/III/IV), and rhodium­(III) ions isolated from C–H activation reactions of dibenzo­[1,2]­quinoxaline (DBQ) using triphenylphosphine, carbonyl, and halides as coligands is reported. The CN–chelate complexes isolated are <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>1</b>), <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>2</b>), <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans-</i>[Os<sup>II</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>(CO)­Br] (<b>4</b>), and <i>trans-</i>[Rh<sup>III</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>). Reaction of <b>1</b> with NO affords <i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl (<b>6</b><sup>+</sup>Cl<sup>–</sup>), isoelectronic to <b>2</b>, with a byproduct, [Ru­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>3</sub>] (<b>7</b>). Complexes <b>1</b>–<b>5</b> and <b>6</b><sup>+</sup> were characterized by elemental analyses, mass, IR, NMR, and electron paramagnetic resonance (EPR) spectra including the single-crystal X-ray structure determinations of <b>1</b>–<b>3</b> and <b>5</b>. The Ru<sup>III</sup>–C, Ru<sup>II</sup>–C, Os<sup>III</sup>–C, and Rh<sup>III</sup>–C lengths are 2.049(2), 2.074(3), 2.105(16), and 2.012(3) Å in <b>1</b>, <b>2</b>, <b>3</b>, and <b>5</b>. In cyclic voltammetry, <b>2</b>, <b>3</b>, and <b>4</b> undergo oxidation at 0.59, 0.39, and 0.46 V, versus Fc<sup>+</sup>/Fc couple, to <i>trans-</i>[Ru<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>2</b><sup>+</sup>), <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>+</sup>), and <i>trans-</i>[Os<sup>III</sup>(DBQ)­(CO)­(PPh<sub>3</sub>)<sub>2</sub>Br]<sup>+</sup> (<b>4</b><sup>+</sup>) ions. Complex <b>3</b><sup>+</sup> incorporates an Os<sup>IV</sup>(d<sup>4</sup> ion)–C bond. The <b>6</b><sup>+</sup>/<i>trans-</i>[Ru­(DBQ)­(NO)­(PPh<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b>) reduction couple at −0.65 V is reversible. <b>2</b><sup>+</sup>, <b>3</b><sup>+</sup>, <b>4</b><sup>+</sup> and <b>6</b> were substantiated by spectroelectrochemical measurements, EPR spectra, and density functional theory (DFT) and time-dependent (TD) DFT calculations. The frozen-glass EPR spectrum of the electrogenerated <b>6</b> exhibits hyperfine couplings due to <sup>99,101</sup>Ru and <sup>14</sup>N nuclei. DFT calculations on <i>trans-</i>[Os<sup>III</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), S<sub>t</sub> = 1/2 and <i>trans-</i>[Os<sup>IV</sup>(DBQ)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>]<sup>+</sup> (<b>3</b><sup>Me+</sup>), S<sub>t</sub> = 0, <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl]<sup>+</sup> (<b>6</b><sup>Me+</sup>), S<sub>t</sub> = 0 and <i>trans-</i>[Ru­(DBQ)­(NO)­(PMe<sub>3</sub>)<sub>2</sub>Cl] (<b>6</b><sup>Me</sup>), S<sub>t</sub> = 1/2, authenticated a significant mixing between d<sub>Os</sub> and π<sub>aromatic</sub>* orbitals, which stabilizes M<sup>II/III/IV</sup>–C bonds and the [RuNO]<sup>6</sup> and [RuNO]<sup>7</sup> states, respectively, in <b>6</b><sup>+</sup> and <b>6</b>, which is defined as a hybrid state of <i>trans-</i>[Ru<sup>II</sup>(DBQ)­(NO<sup>•</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] and <i>trans-</i>[Ru<sup>I</sup>(DBQ)­(NO<sup>+</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl] states
    corecore