Ruthenium, Rhodium, Osmium, and Iridium Complexes of Osazones (Osazones = Bis-Arylhydrazones of Glyoxal): Radical versus Nonradical States

Abstract

Phenyl osazone (L<sup>NHPh</sup>H<sub>2</sub>), phenyl osazone anion radical (L<sup>NHPh</sup>H<sub>2</sub><sup>•–</sup>), benzoyl osazone (L<sup>NHCOPh</sup>H<sub>2</sub>), benzoyl osazone anion radical (L<sup>NHCOPh</sup>H<sub>2</sub><sup>•–</sup>), benzoyl osazone monoanion (L<sup>NCOPh</sup>HMe<sup>–</sup>), and anilido osazone (L<sup>NHCONHPh</sup>HMe) complexes of ruthenium, osmium, rhodium, and iridium of the types <i>trans</i>-[Os­(L<sup>NHPh</sup>H<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b>), <i>trans</i>-[Ir­(L<sup>NHPh</sup>H<sub>2</sub><sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>4</b>), <i>trans</i>-[Ru­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>5</b>), <i>trans</i>-[Os­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PPh<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>6</b>), <i>trans</i>- [Rh­(L<sup>NHCOPh</sup>H<sub>2</sub><sup>•–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>7</b>), <i>trans</i>-[Rh­(L<sup>NHCOPh</sup>HMe<sup>–</sup>)­(PPh<sub>3</sub>)<sub>2</sub>Cl]­PF<sub>6</sub> ([<b>8</b>]­PF<sub>6</sub>), and <i>trans</i>-[Ru­(L<sup>NHCONHPh</sup>HMe)­(PPh<sub>3</sub>)<sub>2</sub>Cl]Cl ([<b>9</b>]­Cl) have been isolated and compared (osazones = bis-arylhydrazones of glyoxal). The complexes have been characterized by elemental analyses and IR, mass, and <sup>1</sup>H NMR spectra; in addition, single-crystal X-ray structure determinations of <b>5</b>, <b>6</b>, [<b>8</b>]­PF<sub>6</sub>, and [<b>9</b>]Cl have been carried out. EPR spectra of <b>4</b> and <b>7</b> reveal that in the solid state they are osazone anion radical complexes (<b>4</b>, <i>g</i><sub>av</sub> = 1.989; <b>7</b>, 2.028 (Δ<i>g</i> = 0.103)), while in solution the contribution of the M­(II) ions is greater (<b>4</b>, <i>g</i><sub>av</sub> = 2.052 (Δ<i>g</i> = 0.189); <b>7</b>, <i>g</i><sub>av</sub> = 2.102 (Δ<i>g</i> = 0.238)). Mulliken spin densities on L<sup>NHPh</sup>H<sub>2</sub> and L<sup>NHCOPh</sup>H<sub>2</sub> obtained from unrestricted density functional theory (DFT) calculations on <i>trans</i>-[Ir­(L<sup>NHPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>4</b><sup>Me</sup>) and <i>trans</i>-[Rh­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (<b>7</b><sup>Me</sup>) in the gas phase with doublet spin states authenticated the existence of L<sup>NHPh</sup>H<sub>2</sub><sup>•–</sup> and L<sup>NHCOPh</sup>H<sub>2</sub><sup>•–</sup> anion radicals in <b>4</b> and <b>7</b> coordinated to iridium­(III) and rhodium­(III) ions. DFT calculations on <i>trans</i>-[Os­(L<sup>NHPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>3</b><sup>Me</sup>), <i>trans</i>-[Os­(L<sup>NHCOPh</sup>H<sub>2</sub>)­(PMe<sub>3</sub>)<sub>2</sub>Br<sub>2</sub>] (<b>6</b><sup>Me</sup>), and <i>trans</i>-[Ru­(L<sup>NHCONHPh</sup>HMe<sup>–</sup>)­(PMe<sub>3</sub>)<sub>2</sub>Cl] [<b>9</b><sup>Me</sup>]<sup>+</sup> with singlet spin states established that the closed-shell singlet state (CSS) solutions of <b>3</b>, <b>5</b>, <b>6</b>, and [<b>9</b>]­Cl are stable. The lower value of M<sup>III</sup>/M<sup>II</sup> reduction potentials and lower energy absorption bands corroborate the higher extent of mixing of d orbitals with the π* orbital in the case of <b>3</b> and <b>6</b>. Time-dependent (TD) DFT calculations elucidated the MLCT as the origin of the lower energy absorption bands of <b>3</b>, <b>5</b>, and <b>6</b> and π → π* as the origin of transitions in <b>4</b> and <b>7</b>

    Similar works

    Full text

    thumbnail-image

    Available Versions