Oxidovanadium Catechol Complexes: Radical versus Non-Radical States and Redox Series

Abstract

A new family of oxidovanadium complexes, [(L<sub>1</sub><sup>R</sup>)­(VO)­(L<sup>R<sup>′</sup></sup>)] (R = H, R′ = H, <b>1</b>; R = H, R′ = -CMe<sub>3</sub>, <b>2</b>; R = H, R′ = Me, <b>3</b>; R = -CMe<sub>3</sub>, R′ = H, <b>4</b> and R = -CMe<sub>3</sub>, R′ = -CMe<sub>3</sub>, <b>5</b>), incorporating tridentate L<sub>1</sub><sup>R</sup>H ligands (L<sub>1</sub><sup>R</sup>H = 2,4-di<i>-</i>R-6-{(2-(pyridin-2-yl)­hydrazono)­methyl}­phenol) and substituted catechols (L<sup>R<sup>′</sup></sup>H<sub>2</sub>) was substantiated. The V–O<sub>phenolato</sub> (cis to VO), V–O<sub>CAT</sub> (cis to VO) and V–O<sub>CAT</sub> (trans to VO) lengths span the ranges, 1.894(2)–1.910(2), 1.868(2)–1.887(2), and 2.120(2)–2.180(2) Å. The metrical oxidation states (MOS) of the catechols in <b>1</b>–<b>5</b> are fractional and vary from −1.43 to −1.60. The <sup>51</sup>V isotropic chemical shifts of solids and solutions of <b>1</b>–<b>5</b> are deshielded (<sup>51</sup>V CP MAS: −19.8 to +248.6; DMSO-d<sub>6</sub>: +173.9 to +414.55 ppm). The closed shell singlet (CSS) solutions of <b>1</b>–<b>5</b> are unstable due to open shell singlet (OSS) perturbations. The ground electronic states of <b>1</b>–<b>5</b> are defined by the resonance contribution of the catecholates (L<sup>R<sup>′</sup></sup><sub>CAT</sub><sup>2–</sup>) and L<sup>R<sup>′</sup></sup><sub>SQ</sub><sup>–•</sup> coordinated to the [VO]<sup>3+</sup> and [VO]<sup>2+</sup> ions. <b>1</b>–<b>5</b> are reversibly reducible by one electron at −(0.58–0.87) V, referenced vs ferrocenium/ferrocene, to VO<sup>2+</sup> complexes, [(L<sub>1</sub><sup>R–</sup>)­(VO<sup>2+</sup>)­(L<sup>R<sup>′</sup></sup><sub>CAT</sub><sup>2–</sup>)]<sup>−</sup> [<b>1</b>–<b>5</b>]<sup>−</sup>. <b>1</b>–<b>5</b> display another quasi-reversible or irreversible reduction wave at −(0.80–1.32) V due to the formation of hydrazone anion radical (L<sub>1</sub><sup>R2–•</sup>) complexes, [(L<sub>1</sub><sup>R2–•</sup>)­(VO<sup>2+</sup>)­(L<sup>R<sup>′</sup></sup><sub>CAT</sub><sup>2–</sup>)]<sup>2–</sup>, [<b>1</b>–<b>5</b>]<sup>2–</sup>, with <i>S</i> = 1 authenticated by the unrestricted density functional theory (DFT) calculations on <b>1</b><sup>2–</sup> and <b>3</b><sup>2–</sup> ions. Frozen glasses electron paramagnetic resonance (EPR) spectra of [<b>1</b>–<b>5</b>]<sup>−</sup> ions [e.g., for <b>2</b>, <i>g</i><sub>||</sub> = 1.948, <i>g</i><sub>⊥</sub> = 1.979, <i>A</i><sub>||</sub> = 164, <i>A</i><sub>⊥</sub> = 60] affirmed that [<b>1</b>–<b>5</b>]<sup>−</sup> ions are the [VO]<sup>2+</sup> complexes of L<sup>R′</sup><sub>CAT</sub><sup>2–</sup>. Spectro-electrochemical measurements and time-dependent DFT (TD DFT) calculations on <b>1</b>, <b>3</b>, <b>1</b><sup>–</sup>, <b>3</b><sup>–</sup>, and <b>1</b><sup>2–</sup> disclosed that the near infrared (NIR) absorption bands of <b>1</b>–<b>5</b> at 800 nm are due to the CSS-OSS metal to ligand charge transfer which are red-shifted in the solid state and disappear in [<b>1</b>–<b>5</b>]<sup>−</sup> and [<b>1</b>–<b>5</b>]<sup>2–</sup> ions

    Similar works

    Full text

    thumbnail-image

    Available Versions