3 research outputs found

    UTILISATION OF NEAT RICEBRAN METHYL ESTER AND IT’S BLENDS AS FUEL FOR THE CI ENGINE

    Get PDF
    To meet increasing energy requirements, there has been growing interest in alternate fuels like biodiesel to provide a suitable diesel oil substitute for internal combustion engines. Biodiesel offer a very promising alternate to diesel oil since they are renewable and have similar properties. It is an oxygenated fuel and emissions of carbon monoxide are less unlike fossil fuels, the use of biodiesel does not contribute to global warming as CO2 emitted is once again absorbed by the plants grown for vegetable oil/biodiesel production, thus CO2 balance is maintained. In this paper the Rice bran methyl ester (RBME) in the neat form and various blends is used with pure diesel to study load test of the engine. The performance of the engine under different operating conditions and blends are compared by calculating the brake thermal efficiency, total fuel consumption and brake specific fuel consumption by using pure diesel and adding various blends of Rice bran methyl ester with diesel

    COMBUSTION AND PERFORMANCE ANALYSIS OF DI-CI ENGINE FUELD WITH NEAT COTTON SEED METHYL ESTER WITH A CLOSE VISCOSITY TO PETRO DIESEL

    No full text
    In many countries Methyl esters of vegetable oils are blended with the petroleum diesel and used as partial substituent to petroleum diesel, because their properties such as cetane number, density are very near to the petroleum diesel and the calorific value is comparable.  But the flash point, auto-ignition temperature and viscosity are higher than the petroleum diesel. If it is used in the neat form preheating will gives the close viscosity to the petroleum diesel.  Preheating of these esters before entering into the combustion chamber of diesel engine, results in better atomization and vaporization for the same injection pressure of the engine. Too much heating is also not advisable to encourage, because it causes for formation of vapors in the fuel lines. Hence in our investigations, preheated cotton seed methyl ester (CsME) used as fuel for single cylinder diesel engine and 270C, 350C,400C, 450C, 520C& 550C are the different preheating temperatures maintained. Combustion, performance and pollution parameters are analyzed at all these temperatures and found that preheating of fuel to the temperature in between 450C-520C gives good results

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. Interpretation: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers. Funding: Bill & Melinda Gates Foundation
    corecore