11 research outputs found

    The Molecular Role of SERF in Amyloid Formation:a fine line between toxicity and function

    Get PDF
    An important hallmark of most neurodegenerative diseases is the presence of misfolded proteins that can accumulate into toxic aggregates. Previous studies identified the aggregation-promoting modifier of aggregation 4 (MOAG-4) in Caenorhabditis elegans and small EDRK-rich factors (SERF)1 and SERF2 in humans. These factors were found to promote the aggregation and associated toxicity of multiple, unrelated amyloidogenic proteins. The mechanisms through which MOAG-4/SERF bind to and drive the aggregation of structurally unrelated proteins has remained elusive, as well as their endogenous functions. We showed that SERF2 interacts through charge-based interactions with amyloidogenic proteins, and accelerated the aggregation of these proteins. The highly conserved, positively charged N-terminus of SERF2, as well as negatively charged regions in amyloidogenic proteins are required for these interactions. In addition, neutralizing the charged region in MOAG-4 suppressed protein aggregation in C. elegans. Interactions between positively charged SERF2 and these negatively charged regions might induce structural conversions in amyloidogenic proteins that could enhance amyloid fibril formation. Furthermore, we identified 21 potential SERF2-interacting proteins. The identification of multiple RNA-binding proteins among our potential SERF2 interacting proteins suggests a role for SERF2 as an RNA-organizing protein in liquid-like RNA organelles. Further research is needed to confirm these interactions and to validate the exact function of SERF2 in these molecular pathways. Taken together, this thesis demonstrates the relevance of charge-based interactions between amyloidogenic proteins and amyloid-promoting factors like SERF2. In addition, it provides a basis for determining the endogenous function of SERF2

    Regulation of Age-Related Protein Toxicity

    Get PDF
    Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies

    The cellular modifier MOAG-4/SERF drives amyloid formation through charge complementation.

    Get PDF
    While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid-promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG-4 to neutralize charge. Our data indicate that MOAG-4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation-prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age-related protein toxicity

    Efficient intracellular delivery of native proteins

    Get PDF
    Modulation of protein function is used to intervene in cellular processes but is often done indirectly by means of introducing DNA or mRNA encoding the effector protein. Thus far, direct intracellular delivery of proteins has remained challenging. We developed a method termed iTOP, for induced transduction by osmocytosis and propanebetaine, in which a combination of NaCl hypertonicity-induced macropinocytosis and a transduction compound (propanebetaine) induces the highly efficient transduction of proteins into a wide variety of primary cells. We demonstrate that iTOP is a useful tool in systems in which transient cell manipulation drives permanent cellular changes. As an example, we demonstrate that iTOP can mediate the delivery of recombinant Cas9 protein and short guide RNA, driving efficient gene targeting in a non-integrative manner

    Efficient intracellular delivery of native proteins

    No full text
    Modulation of protein function is used to intervene in cellular processes but is often done indirectly by means of introducing DNA or mRNA encoding the effector protein. Thus far, direct intracellular delivery of proteins has remained challenging. We developed a method termed iTOP, for induced transduction by osmocytosis and propanebetaine, in which a combination of NaCl hypertonicity-induced macropinocytosis and a transduction compound (propanebetaine) induces the highly efficient transduction of proteins into a wide variety of primary cells. We demonstrate that iTOP is a useful tool in systems in which transient cell manipulation drives permanent cellular changes. As an example, we demonstrate that iTOP can mediate the delivery of recombinant Cas9 protein and short guide RNA, driving efficient gene targeting in a non-integrative manner

    CIAO1 and MMS19 de fi ciency : A lethal neurodegenerative phenotype caused by cytosolic Fe-S cluster protein assembly disorders

    No full text
    Purpose: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. Methods: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. Results: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. Conclusion: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients. (c) 2024 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Correction to: An autosomal dominant neurological disorder caused by de novo variants in FAR1 resulting in uncontrolled synthesis of ether lipids (Genetics in Medicine, (2021), 23, 4, (740-750), 10.1038/s41436-020-01027-3)

    No full text
    In the original author list, Seth Perlman’s degrees were listed as MD, PhD. Dr Perlman’s degree is MD. The original version has been corrected
    corecore