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Anita Pras and Ellen A. A. Nollen*

Laboratory of Molecular Neurobiology of Ageing, European Research Institute for the Biology of Ageing, University Medical
Centre Groningen, University of Groningen, Groningen, Netherlands

Proteome damage plays a major role in aging and age-related neurodegenerative
diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic
protein misfolding and aggregation. These mechanisms include molecular chaperones
for protein folding, spatial compartmentalization for sequestration, and degradation
pathways for the removal of harmful proteins. These mechanisms decline with age,
resulting in the accumulation of aggregation-prone proteins that are harmful to cells.
In the past decades, a variety of fast- and slow-aging model organisms have been
used to investigate the biological mechanisms that accelerate or prevent such protein
toxicity. In this review, we describe the most important mechanisms that are required for
maintaining a healthy proteome. We describe how these mechanisms decline during
aging and lead to toxic protein misassembly, aggregation, and amyloid formation.
In addition, we discuss how optimized protein homeostasis mechanisms in long-
living animals contribute to prolonging their lifespan. This knowledge might help us
to develop interventions in the protein homeostasis network that delay aging and
age-related pathologies.

Keywords: protein homeostasis, protein quality control, aggregation, phase separation, amyloid, aging

INTRODUCTION

Declining protein homeostasis is a major cause of age-related diseases (Koga et al., 2011; López-
Otín et al., 2013; Stroo et al., 2017). Tight regulation of protein homeostasis is required to maintain
a stable proteome. Regulatory mechanisms include correct protein folding and removal of proteins
that are no longer functional or required (Hipp et al., 2019). The ability of the protein homeostasis
system to stabilize native proteins declines with age, resulting in protein misassembly, aggregation
and cellular toxicity (reviewed in Hipp et al., 2019). Many forms of neurodegenerative diseases
are age-dependent and develop in parallel to a decline in protein homeostasis pathways (reviewed
in Klaips et al., 2018; Hipp et al., 2019). Recent studies have focused on age-related changes in
protein homeostasis and have identified remarkable differences in the protein homeostasis systems
of long-living species and their closely related short-living species (Gruber et al., 2015; Rodriguez
et al., 2016; Du et al., 2020; Lagunas-Rangel, 2020). Although most protein homeostasis pathways
are generally the same, differences in expression and function of certain protein homeostasis
components may contribute to longevity and healthy aging.

Most of what we know about protein homeostasis and aging has come from studies in
Caenorhabditis elegans, Saccharomyces cerevisiae, Drosophila melanogaster, and Mus musculus.
These models are useful for studying aging and age-related diseases because they are easy to
maintain and have short lifespans (i.e., they age quickly) (Valenzano et al., 2017). In addition,
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they are well characterized and their genomes have been fully
sequenced (C. elegans Sequencing Consortium, 1998; Adams
et al., 2000; Waterston et al., 2002; Engel et al., 2014).
Since a decline in protein homeostasis has been proposed to
cause aging, researchers have looked for ways to optimize
protein homeostasis to prevent or delay the development
of age-related diseases. Long-living C. elegans, S. cerevisiae,
D. melanogaster and M. musculus mutant models help us
understand which mechanisms are important for longevity
(Kenyon et al., 1993; Clancy et al., 2001; Brown-Borg and
Bartke, 2012; Muid et al., 2019). However, examining those
species that have naturally evolved as long-living might provide
additional clues about the mechanisms of healthy aging (Cohen,
2018). For example, long-living animal species like bivalve
mollusks, naked mole-rats, and bats have developed mechanisms
to reduce reactive oxygen species (ROS) production and to
protect their proteomes from unfolding (Brunet-Rossinni, 2004;
Gruber et al., 2015; Treaster et al., 2015). Increased chaperone
production, autophagy, and proteasome activity further prolong
the lifespan of these long-living species (Pérez et al., 2009;
Rodriguez et al., 2014, 2016).

In this review, we discuss the most important protein
homeostasis mechanisms for a healthy proteome. We summarize
the current knowledge on factors and pathways that play a role
in mammalian protein homeostasis and how changes in protein
homeostasis can contribute to aging. We also discuss what we can
learn from protein homeostasis machineries in short- and long-
living animal species. These lessons could suggest interventions
for improving protein homeostasis in humans to prevent or delay
the onset of age-related diseases.

PROTEIN HOMEOSTASIS DECLINES
WITH AGING

Protein Synthesis
The protein homeostasis system regulates protein function from
the moment a protein is synthesized to when it is degraded or
secreted. A strict balance between protein synthesis, folding, and
degradation is needed to maintain the protein levels required
for normal cellular function without overwhelming the protein
quality control machinery. The number of proteins that can be
synthesized depends on several factors, including the availability
of mRNA transcripts and ribosomes for protein translation
(Walther et al., 2015; Hipp et al., 2019). The presence and
activity of translation initiation (eIF) and elongation factors (eEF)
(e.g., eIF2α, eIF4E and eEF2) additionally determine the rate
of protein synthesis (Papadopoli et al., 2019; Xie et al., 2019;
Anisimova et al., 2020). For example, phosphorylation of eIF2α

inhibits protein synthesis, and multiple studies have shown that
a reduction in protein translation improves health and extends
lifespan (Hansen et al., 2007; Pan et al., 2007; Pakos-Zebrucka
et al., 2016; Xie et al., 2019). Other initiation and elongation
factors are regulated by the mechanistic target of rapamycin
complex 1 (mTORC1)-signaling pathway (Papadopoli et al.,
2019; Xie et al., 2019). mTORC1 is an important regulator of
protein synthesis and mediates, for example, the phosphorylation

eIF4E-binding proteins (4E-BPs) that control the activity of the
translation initiation factor eIF4E (Papadopoli et al., 2019). In
addition, mTORC1 mediates translation accuracy by controlling
eEF2 kinase (Xie et al., 2019).

During aging, protein synthesis rates decline (Dhondt et al.,
2017; Yang et al., 2019). Inhibition of protein translation could be
a protective mechanism to reduce the burden on protein quality
control machineries and to restore protein homeostasis (Hipp
et al., 2019). This decline may in part result from a reduction
in ribosome abundance during aging (Walther et al., 2015). On
the other hand, however, mTOR activity increases with increasing
age, which results in increased protein synthesis rates, and
reduced expression of chaperones, autophagy and proteasome
activity (Yang et al., 2012; Papadopoli et al., 2019). With
increasing age, imbalances in protein homeostasis can therefore
lead to chronic stress conditions, reduced phosphorylation and
lack of inhibition of factors involved in protein synthesis (Ben-Zvi
et al., 2009; Taylor, 2016).

Molecular Chaperones
After a polypeptide chain is synthesized, it undergoes structural
conversions before being folded into its stable native state (Hartl,
2017). Many proteins need this stable 3D-structure to function
properly, and correct folding is largely determined by the amino
acid sequence of the protein (Anfinsen, 1973). Intra-molecular
amino acid interactions like hydrogen bonds, disulfide bonds,
electrostatic interactions, and hydrophobic interactions guide
proteins toward their native conformation (Longo and Blaber,
2016). These intra-molecular forces are usually sufficient to
fold short polypeptide chains, but ATP-dependent molecular
chaperones are needed to fold larger globular proteins into their
native conformation (Figure 1).

The main molecular chaperone families that are involved in
de novo folding of newly synthesized proteins are the heat-shock
proteins (Hsps) 70 and 90, and chaperonins. The most universal
chaperone is Hsp70, which has multiple functions in protein
homeostasis, and is involved in nascent protein folding at the
ribosome, in post-translational refolding of aggregation-prone
proteins in the cytosol, and in re-solubilization of aggregates
(Figure 1) (reviewed in Matthias P Mayer and Gierasch, 2019).
Once bound to Hsp70, substrate proteins are stabilized and
ready for folding or refolding with the help of co-chaperones
(e.g., Hsp40, Hsp90) or chaperonins (Hsp60) (Kim et al., 2013;
Genest et al., 2015, 2019). ATP-dependent chaperones protect
against protein aggregation by promoting the correct folding of
unfolded or aggregation-prone proteins. In contrast, small heat
shock proteins (sHsps) are ATP-independent chaperones that
bind and hold onto unfolded protein species (reviewed in Mogk
et al., 2018). During cellular stress, sHsps keep unfolded proteins
in a refolding-competent state so that refolding can be initiated
upon stress relief (Cashikar et al., 2005; Escusa-Toret et al., 2013;
Ungelenk et al., 2016; Shen et al., 2019). sHsps cannot refold
aggregation-prone proteins to their native state. For refolding,
they require the assistance of ATP-dependent chaperones, like
Hsp70. Under proteotoxic stress conditions chaperones levels are
increased by cellular stress response pathways, such as the heat
shock response. This cytosolic stress response, is regulated by heat
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FIGURE 1 | Protein homeostasis network After the synthesis of a new polypeptide chain, the folding of a protein toward its native conformation can either directly
occur through intermolecular interactions (A), or with the help of molecular chaperones. Chaperones can either promote correct folding co-translationally at the
ribosome (B) or post-translationally in the cytosol (C). Upon toxic stress conditions, protein misfolding toward aggregation-prone species and oligomers can occur,
followed by fibril formation and the formation of insoluble protein aggregates. To protect the cell from these toxic protein species, active unfolding (D), re-folding (E)
and re-solubilization of aggregates through disaggregation (F) occurs, with the help of molecular chaperones, while sHsps perform their function as ‘holdase’ in
sHSP oligomers (G). Alternatively, misfolded protein species can be sequestered in, for example, the JUNQ (H), nucleolus (I) or aggresome (J). Alternatively, proteins
can be degraded by the proteasome (K) or through autophagy (L), or secreted into the extracellular environment (M).

shock factors (HSFs), of which HSF1 is the best characterized
(Chaudhury et al., 2021).

Chaperones are also important when the number of misfolded
proteins increase with aging. However, studies in C. elegans
showed that the ability to activate the heat shock response
reduces with increasing age (Ben-Zvi et al., 2009; Shemesh et al.,
2013; Brehme et al., 2014; Labbadia and Morimoto, 2015). This
decline in ability occurs early in adulthood, at the onset of
oocyte biomass production, and seems a consequences of a
reduced expression of the H3K27 demethylase jmjd-3.1 (Shemesh
et al., 2013; Labbadia and Morimoto, 2015). A decline in the
ability to induce chaperone expression with increasing age,
was also found in senescent human lung fibroblasts (Sabath
et al., 2020). In contrast, Walther and colleagues did not
observe major changes in Hsp70 and Hsp90 expression in C.
elegans throughout life, while sHsp expression even increased
dramatically during aging (Walther et al., 2015). Most sHsps
accumulated in aggregates during aging, indicating that cells
actively sequester their proteins to cope with the increase in
aggregation-prone proteins (Walther et al., 2015). In addition,
the number of sHsp-associated inclusions strongly increased with
aging in the long-living daf-2 C. elegans mutant, which suggests
that sequestration is a protective mechanism (Walther et al.,
2015). These findings agree with previous results in human tissue

samples, where increased expression of sHsp genes was observed
in the aging brain, and elevated sHsp levels were detected in
skeletal muscles of aged individuals (Yamaguchi et al., 2007;
Brehme et al., 2014).

Unfolded Protein Responses in the ER
Another important stress response pathway that regulates
protein-folding is the unfolded protein response in the
endoplasmic reticulum (ER), the UPRER pathway (Taylor, 2016;
Frakes and Dillin, 2017). The ER creates a tightly regulated
environment for folding, processing, and secretion of newly
synthesized secretory and membrane proteins. The ER detects
and responds to any imbalances in protein homeostasis, such
as hypoxia, nutrient deprivation and excessive protein oxidation
(Martínez et al., 2017). The three most important factors
responsible for the UPRER are the transmembrane sensors
inositol-requiring protein 1 (IRE1), activating transcription
factor 6 (ATF6), and PKR-like ER kinase (PERK) (Frakes and
Dillin, 2017). During non-stressful physiological conditions,
these sensors are quiescent through interaction with the ER
chaperone binding immunoglobulin protein (BiP). When the
number of unfolded or aggregation-prone proteins increases,
BiP is recruited and titrated away from the stress sensors,
which activates the UPRER (Bertolotti et al., 2000; Carrara et al.,
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2015). In addition, unfolded or aggregation-prone proteins can
directly bind to the UPRER sensors and activate the UPRER

(Gardner and Walter, 2011).
Activation of different UPRER components has been

associated with lifespan extension, and results in reduced protein
synthesis and increased expression of chaperones and factors
contributing to proteasomal degradation (Taylor and Dillin,
2013; Luis et al., 2016; Martínez et al., 2017). Upon UPRER

activation, the transcription factor X-box binding protein 1
(Xbp1) promotes transcription of genes encoding for chaperones
and factors that promote ER-associated degradation. In neurons,
overexpression of Xbp1 can prevent the decline in ability to
induce the UPRER with aging (Frakes et al., 2020). At the same
time, enhanced lipid biogenesis increases protein folding and
protein degradation in the ER (Chalmers et al., 2017; Frakes
and Dillin, 2017). However, the ability to induce the UPRER

and its downstream targets decline with increasing age (Sabath
et al., 2020; Taylor and Hetz, 2020). In addition, absolute
UPRER-induced chaperone levels decrease during aging and the
UPRER-regulated chaperones that are still present, accumulate
increasing amounts of oxidative damage (Taylor, 2016). The role
of UPRER in aging has recently been extensively reviewed by
Taylor and Hetz (Taylor and Hetz, 2020).

Unfolded Protein Responses in the
Mitochondria
Another important unfolded protein response mechanism is
the mitochondrial UPR (UPRmt). The UPRmt is activated
in response to different kinds of stressors. Examples include
excessive amounts of reactive oxygen species (ROS) or impaired
import of mitochondrial proteins due to damaged protein
accumulation (Nargund et al., 2012; Fiorese et al., 2016; Shpilka
and Haynes, 2018). Activation of the UPRmt is required for
repair of the mitochondrial network and maintenance of
the mitochondrial function for the cell (Shpilka and Haynes,
2018). Mild, temporary mitochondrial stress is beneficial as it
maintains protein homeostasis through upregulation of HSF-1
(Labbadia et al., 2017).

Chronic activation of the UPRmt, however, which also occurs
during aging, gradually impairs mitochondrial ATP production,
and increases electron leakage (Shpilka and Haynes, 2018).
Aging has therefore been associated with increased levels of
ROS. A chronic increase in ROS production causes oxidative
stress and contributes to the accumulation of DNA damage
(e.g., mutations and chromosomal aneuploidies), RNA damage,
and further mitochondrial damage (Korovila et al., 2017).
All of which contribute to the increase in aggregation-prone
proteins with aging (Faggioli et al., 2012; Forsberg et al.,
2012; Liu et al., 2020). Furthermore, proteins can be directly
damaged by oxidation, which induces structural changes and
makes proteins more aggregation-prone (Serebryany et al.,
2016; Lévy et al., 2019). Especially the amino acid cysteine
(Cys) is susceptible due to the presence of a nucleophilic
thiol-group, but also the amino acids tryptophan, tyrosine,
methionine and histidine are prone for oxidation (Lévy et al.,
2019). In addition, oxidation can alter the side-chain charges of

amino acids, which affects native folding and repulsion between
proteins (known as colloidal stability) (Samantha S. Strickler
et al., 2006; Gribenko and Makhatadze, 2007; Beerten et al.,
2012; De Baets et al., 2014). Altogether, age-related chronic
mitochondrial stress results in the accumulation of ROS and
damaged proteins, and in a reduction in ATP, which further
contributes to the decline in mitochondrial function and results
in an imbalance in protein homeostasis (Korovila et al., 2017;
Shpilka and Haynes, 2018).

Regulated Sequestration and
Disaggregation
Aggregation-prone proteins or prematurely terminated proteins
(defective ribosomal products) can be stored in compartments
such as the juxtanuclear quality control compartment (JUNQ)
or membraneless nuclear bodies (Kaganovich et al., 2008;
Mediani et al., 2019). In addition, functional amyloids assemble
into storage sites termed amyloid (A)-bodies, to store proteins
under stressful conditions. The formation of these storage
sites might be a physiological mechanism to immobilize
proteins and allow the cell to become dormant (Audas et al.,
2016). Once the stressor is released, proteins in the A-bodies
disaggregate back to a soluble state with the help of molecular
chaperones. Several specialized protein quality control sites
have been identified in the mammalian cell (reviewed in
Sontag et al., 2017), including the JUNQ, the perivacuolar
compartment (aggresome, equivalent to the insoluble protein
deposit, IPOD, in yeast), and the nucleolus (Kaganovich
et al., 2008; Frottin et al., 2019). Sorting of aggregation-prone
cytosolic proteins to these distinct compartments depends on
chaperone binding and ubiquitination. Soluble aggregation-
prone proteins that are recognized by the protein quality control
machinery are ubiquitinated and subsequently transported
to the JUNQ (Figure 1; Sontag et al., 2017). The JUNQ
contains disaggregating chaperones and 26S proteasomes,
which increase the efficiency for refolding or degradation
of aggregation-prone proteins (Kaganovich et al., 2008).
However, if the quality control machinery is overwhelmed
or impaired, aggregation-prone proteins might continue to
accumulate. These bigger assemblies are usually directed to
aggresomes, which terminally sequester small protein aggregates,
including amyloidogenic aggregates (Johnston et al., 1998;
Figure 1).

The role of the above-mentioned sequestration compartments
in aging remains unclear. Studies indicate that soluble
aggregation-prone proteins and oligomers have a pathological
role in neurodegenerative diseases like Alzheimer’s disease and
Huntington’s disease (Mucke et al., 2000; Arrasate et al., 2004;
Iulita et al., 2014). The aggregation of these soluble proteins
was therefore suggested as a protective mechanism to prevent
cytotoxicity (Arrasate et al., 2004; Cohen et al., 2006; Hong
et al., 2014). Indeed, hyperaggregation of amyloid-beta was
associated with delayed age-related proteotoxicity of soluble
amyloid-beta, upon reduction of insulin/insulin growth factor
(IGF) signaling in an Alzheimer’s mouse model (Cohen et al.,
2009). As mentioned before, also the upregulation of sHsp
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inclusions has been associated with lifespan extension in worms
(Walther et al., 2015). However, how the formation of storage
compartments affect aging remains unclear. While sequestration
of aggregation-prone proteins might seem beneficial initially,
these temporary storage sites might become permanent insoluble
aggregates during chronic stress conditions such as aging.
Cells may not be able to tolerate these large aggregates as they
might sequester functional proteins, release aggregation-prone
species back to the cellular environment, or interfere with
cellular processes (Morley et al., 2002; Olzscha et al., 2011;
Mogk et al., 2018).

Phase Separation and Liquid Droplet
Formation
Proteins can also be compartmentalized by membraneless liquid-
like organelles, which regulate cellular processes rather than store
aggregation-prone and prematurely terminated proteins (Shin
et al., 2017; Mediani et al., 2019). Well-known examples of
membraneless compartments are P-bodies and stress granules in
the cytoplasm, or Cajal bodies in the nucleus. They are normally
characterized by their spherical composition and dynamic
properties, and are therefore also known as liquid droplets
(Brangwynne et al., 2009). These liquid-like compartments are
formed by liquid-liquid phase separation (LLPS). Through LLPS,
a compartment with a higher molecular concentration than
its surrounding is formed. LLPS can be regulated by distinct
proteins, including multivalent proteins (Li et al., 2012) and
intrinsically disordered proteins (Kato et al., 2012; Uversky,
2017). Intrinsically disordered proteins (also known as natively
unfolded proteins) have an amino acid sequence that does
not favor folding into a 3D structure by itself. Most, but
not all unfolded proteins go through a folding-upon-binding
transition as soon as the protein binds to its physiological ligand
(Bonetti et al., 2018; Fuxreiter, 2018). While low complexity
domains are required for LLPS, interactions between RNA and
RNA-recognition motifs further contribute to the assembly of
liquid-like droplets (Figure 2A) (Teixeira et al., 2005; Molliex
et al., 2015; Zhang et al., 2015). Liquid-like compartments
have been implicated in several cellular processes, including
organization and regulation of proteins in the cytosol, and
the controlled release of sequestered molecules from cellular
compartments (Boisvert et al., 2007; Kroschwald et al., 2015;
Molliex et al., 2015; Wheeler et al., 2016; Banani et al., 2017;
Shin and Brangwynne, 2017). Compartments with regulatory
functions include the nucleolus and stress granules. In the
event of stress, they regulate signaling molecules, mRNA,
and transcription/translation complexes to prevent off-target
interactions with other molecules. In addition, studies have
suggested a role for liquid droplet formation in the nucleation
and polymerization of actin and tubulin bundles (Banjade and
Rosen, 2014; Hernández-Vega et al., 2017).

The dynamics of membrane-less compartments with high
concentrations of proteins need to be tightly regulated and
efficient protein quality control usually prevents the transition
of stress granules toward a more solid state (Lechler et al.,
2017). However, such phase transitions can occur if protein

quality control mechanisms are impaired during aging, which
can reduce the dynamic properties of liquid-like compartments
and turn them into solid structures (Seguin et al., 2014). Also,
the number of stress granules that are formed increases with
aging (Lechler et al., 2017). Liquid-to-solid phase transitions
occur more often with increasing age, potentially due to the
presence of increased amounts of damaged proteins that may
be recruited to membrane-less compartments and seed the
formation of aggregates (Lechler et al., 2017; Hipp et al., 2019).
Stress granules and other membrane-less compartments are
enriched in RNA-binding and disordered proteins. Although
there are fewer aggregation-prone regions in disordered proteins,
their aggregation has been associated with aging and age-related
(neurodegenerative) diseases (Linding et al., 2004). Changes in
pH, protein concentration, salt concentration, or temperature
can affect the viscosity of granules and transform liquid droplets
into hydrogels or insoluble amyloid aggregates (Figure 2B;
Alberti and Hyman, 2016; Mateju et al., 2017; Peskett et al.,
2018). Also mutations in or adjacent to the low complexity
domain of RNA-binding proteins could change the biophysical
properties of liquid droplets and accelerate liquid-to-solid phase
transitions (Patel et al., 2015; Gopal et al., 2017). Stress granules
could therefore act as nucleation sites for pathological aggregates.
Several neurodegenerative diseases have been associated with
the aggregation of RNA-binding proteins, including TAR DNA
binding protein of 43 kDa (TDP-43) and fused in sarcoma
(FUS) (Patel et al., 2015; Gopal et al., 2017; Peskett et al., 2018;
Ray et al., 2020).

Cellular Factors That Enhance Protein
Aggregation and Toxicity
Protein homeostasis prevents toxic formation of protein
aggregates. In recent years, however, a range of factors have
been identified that can promote misfolding and aggregation
of various disease-related proteins. For example, cytoplasmic
polyphosphate (polyP) polymers, glucosaminoglycans like
heparin, nucleic acids, and metal cations have been found
to modify the aggregation of Tau, alpha-synuclein, prion
protein, and amyloid-beta, respectively (Uversky et al., 2001;
Jeffrey A. Cohlberg et al., 2002; Nandi et al., 2002; Yugay
et al., 2016; Wickramasinghe et al., 2019). Although the exact
mechanisms remain unresolved, studies suggest that interaction
of polyP with Tau and metal cations with alpha-synuclein
could alter the native protein conformation, increasing the
probability of disease-related aggregation (Uversky et al., 2001;
Wickramasinghe et al., 2019).

A group of proteins which were described for their aggregation
promoting effects, called Modifiers of Aggregation (MOAGs),
were originally identified in a chemical mutagenesis screen in a
C. elegans model of neurodegenerative diseases. In this screen,
MOAG-2 and MOAG-4 promoted polyglutamine aggregation
(Van Ham et al., 2010; Sin et al., 2017). MOAG-2 (also known as
lin-26-related gene 3 [lir-3]) was first identified as an aggregation-
promoting factor that catalyzed the sequestration and toxicity
of polyglutamine in large insoluble aggregates (Sin et al.,
2017). However, this sequestration mechanism seemed to be a
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FIGURE 2 | Membrane-less compartments in the cell and their involvement in aggregation with aging (A) Liquid-liquid phase separation requires often, but not
always, the presence of RNA and RNA-binding proteins. RNA-binding proteins contain RNA-recognition motives and a low-complexity domain in their protein
sequences. (B) Due to the high concentration of proteins in liquid droplets, a strict protein homeostasis is required to prevent phase transitions from liquid-like
compartments to less dynamic states. Although transition from hydrogel to liquid droplet is in some cases still possible, liquid-to-solid and gel-to-solid transitions
normally result in the formation of pathological fibrils and insoluble aggregates.

consequence of MOAG-2/LIR-3 mislocalization from the nucleus
to the cytosol in the presence of polyglutamine, rather than a
protective compartmentalization mechanism in the presence of
aggregation-prone proteins. In the absence of polyglutamine in
wild-type C. elegans, MOAG-2/LIR-3 regulated the transcription
of small non-coding RNAs (Sin et al., 2017).

Moag-4 encodes a small protein with unknown function
that is evolutionarily highly conserved. MOAG-4 is a highly
dynamic, intrinsically disordered protein that forms transient
alpha-helical secondary structures but not tertiary conformations
(Yoshimura et al., 2017). It was shown to act cell-autonomously
and independent from quality control mechanisms such as
chaperones or proteasomes (Van Ham et al., 2010). Also, its
human orthologs, small EDRK-rich factors (SERF)1a and SERF2
were found to enhance off-pathway structural conversions for
several unrelated amyloidogenic proteins (Van Ham et al., 2010;
Falsone et al., 2012). MOAG-4, SERF1a, and SERF2 promote
aggregation of proteins into compact aggregation intermediates
that eventually become large, insoluble aggregates. SERF
promotes aggregation through direct and transient interactions.
Electrostatic interactions between MOAG-4/SERF1a and alpha-
synuclein accelerate the formation of alpha-synuclein fibrils
(Falsone et al., 2012; Yoshimura et al., 2017; Merle et al.,
2019). This aggregation-promoting effect of SERF on alpha-
synuclein was recently suggested to be a toxic side effect,
mediated by an interaction between SERF1a and the negatively
charged C-terminus of alpha-synuclein (Meyer et al., 2019).
This study suggested that SERF1a acts as an RNA chaperone
in the formation of liquid-like RNA organelles. Under stressful
conditions, RNA and alpha-synuclein may compete for SERF
binding, possibly favoring an interaction between alpha-
synuclein and SERF that accelerates amyloid formation (Meyer
et al., 2019). Such stressful conditions could arise during aging as
protein homeostasis declines. Under these conditions, SERF-like

proteins might turn into toxic factors and threaten the proteome.
Nevertheless, the exact function of SERF in the proteome
remains elusive.

Protein Degradation
Numerous mechanisms in the cell regulate protein degradation
and secretion. These mechanisms are necessary to maintain
physiological protein concentrations, clear the cell from proteins
that are no longer required, and to avoid toxic accumulation
of non-native proteins. Proteins are eliminated via three main
pathways: proteasomal degradation, autophagy, and extracellular
secretion (Figure 1).

Proteasome-mediated degradation is regulated by the
ubiquitin-proteasome system (UPS), which is the primary
route for eliminating non-native monomeric proteins. The
autophagy-lysosome pathway (ALP) removes larger proteins,
aggregates, or dysfunctional organelles (reviewed in Dikic, 2017).
Proteins are directed to the UPS and ALP by chaperones
and additional co-factors with ubiquitin ligase activity.
The proteasome regulatory particle specifically recognizes
ubiquitinated substrates and directs them to the proteasome core
particle for degradation (Lander et al., 2012). With the help of
ATP-dependent chaperones, the substrate proteins are unfolded
and digested into peptides of 2–24 residues by protease enzymes.

The best characterized type of autophagy is macroautophagy,
which is the degradation pathway for large components like
cellular organelles and protein aggregates. Macroautophagy is
mediated by a large family of autophagy-related proteins (ATG
proteins) (Noda and Inagaki, 2015). Upon encapsulation of the
substrate material, the autophagosome is formed and transported
along microtubules to fuse together with lysosomes and form an
autolysosome (Yu et al., 2018; Figure 1). Protease enzymes in
the lysosome then degrade the encapsulated material. Another
autophagy pathway, known as endosomal microautophagy in
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mammals, involves the bulk or selective degradation of cytosolic
proteins by endosomes (reviewed in Tekirdag and Cuervo, 2018).
For bulk degradation, cytosolic substrates are directly trapped in
late endosomes. For selective degradation, the heat shock cognate
70 (Hsc70) protein is required (Chiang and Dice, 1988; Sahu
et al., 2011). Another type of chaperone-mediated autophagy
in mammals involves the direct targeting of substrate proteins
to the lysosome by Hsc70. Hsc70 regulates the delivery of
the substrate protein to the lysosome by interacting with the
lysosome-associated membrane protein 2A (Cuervo and Dice,
1996; Salvador et al., 2000). The substrate protein is then unfolded
and translocated to the lysosome for degradation.

Protein degradation relieves the cell from protein overload
and provides amino acids for further protein synthesis
(Suraweera et al., 2012; Dikic, 2017). These processes are
important for maintaining a healthy proteome. In C. elegans,
an age-related decline in proteasomal function and autophagy
was observed (Cuervo and Dice, 2000; Paisán-Ruíz et al., 2004;
Tonoki et al., 2009; Brehme et al., 2014; Martinez-Lopez et al.,
2015; Cho et al., 2018). The imbalance between production
and clearance of misfolded proteins correlates with aging and
ultimately results in protein supersaturation and aggregation
(Ciryam et al., 2013, 2015). The proteostasis network tries
to restore these imbalances by upregulating components
of the ubiquitin proteasome system (Chondrogianni et al.,
2015; Walther et al., 2015). This proteasomal upregulation
has been associated with an increased lifespan in C. elegans
(Chondrogianni et al., 2015).

PROTEIN HOMEOSTASIS IN SHORT-
AND LONG-LIVING ANIMAL SPECIES

Several interventions have been shown to promote health and
extend lifespan in model organisms, including upregulation and
overexpression of different protein homeostasis components,
such as HSF1, Hsp16, 19S proteasomal subunits, and selective
autophagy receptors (Hsu et al., 2003; Walker and Lithgow,
2003; Morley and Morimoto, 2004; Vilchez et al., 2012b; Kumsta
et al., 2019) (Figure 3). Most of this research was conducted
in C. elegans, yeast and mouse models, however, understanding
how improved protein homeostasis mechanisms contribute to
the long lifespans of naturally evolved long-living animal species
might additionally help us understand the mechanisms that are
important in healthy aging.

Oxidative Stress Defense and Proteome
Protection Contribute to Lifespan
Levels of oxidative stress and antioxidants have been correlated
with life-expectancy in the ‘oxidative stress hypothesis of aging’
(Harman, 1956; Csiszar et al., 2007; Shi et al., 2013). In accordance
with this hypothesis, long-living daf-2 mutant C. elegans models
maintain lower oxidative stress levels during their transition to
adulthood than short-living daf-16 mutant strains do (Knoefler
et al., 2012). ROS levels have also been correlated with lifespan
in several long-living animals, including the bivalve mollusk
species Arctica islandica, and the little brown bat species Myotis

lucifugus (Brunet-Rossinni, 2004; Ungvari et al., 2011, 2013;
Gruber et al., 2015). In both animal species, ROS production
is low (Brunet-Rossinni, 2004; Ungvari et al., 2011; Gruber
et al., 2015). A. islandica is an ocean quahog that can live for
over 500 years, and the age can be determined by counting
the annual growth rings in the shell. In addition to low ROS
production, A. islandica has shown increased resistance to
(mitochondrial) oxidative stressors and most genotoxic stressors
compared with shorter-living bivalve species (Salmon et al., 2009;
Ungvari et al., 2011, 2013). Especially remarkable is the low level
of antioxidant response upon acute stress exposure (Ungvari
et al., 2011). In C. elegans the antioxidant enzyme superoxide
dismutase (SOD) is not required for lifespan regulation, although
it is necessary to be able to cope with acute stressors (Van
Raamsdonk and Hekimi, 2009, 2012). In A. islandica, the exact
mechanisms for the remarkable resistance against oxidative
stressors remains unknown, but the resistance to genotoxic
stressors indicates optimal defense pathways such as strong
DNA repair mechanisms, as has also been proposed in several
long-living mammals, including some long-living mouse species,
muroid rodents, bats and primates (Salmon et al., 2008; Ungvari
et al., 2008, 2013; A. Podlutsky et al., 2008). Low ROS levels and
resistance to genome damage likely reduce protein damage, but
to what extent this contributes to the exceptional long lifespan of
A. islandica remains to be determined.

In C. elegans, significant changes in relative proteins
abundance and solubility of the proteome have been reported
with increasing age (David et al., 2010; Reis-Rodrigues et al., 2012;
Walther et al., 2015). An imbalance between the production and
clearance of insoluble proteins correlates positively with aging
and ultimately results in protein supersaturation and subsequent
protein aggregation (Ciryam et al., 2013, 2015). The formation
of insoluble protein aggregates in turn further promotes aging
(Reis-Rodrigues et al., 2012; Huang et al., 2019). A. islandica
has an improved ability to protect its proteome for unfolding
stressors (Treaster et al., 2014, 2015; Gruber et al., 2015).
Although the optimal living temperature for A. islandica ranges
between 5 and 15◦C, most of its proteins stayed soluble even
under extreme temperatures of 100◦C (Treaster et al., 2014). In
addition, A. islandica maintained 45% of its GAPDH activity in
muscle tissue in the presence of 6M urea, indicating superior
proteome protection (Treaster et al., 2015). The strong resistance
to protein unfolding stressors in A. islandica could indicate a
prominent role for molecular chaperones in stabilizing protein
structures. However, ATP-dependent chaperones and small heat
shock proteins could not be identified as responsible factors for
the effective protein homeostasis in A. islandica in this study
(Treaster et al., 2015). Which factors exactly are responsible for
the stabilization of the proteome in A. islandica remain elusive.

Unique Mechanisms Promote the Health
and Lifespan of Naked Mole-Rats
In contrast to A. Islandica and M. lucifugus, oxidative stress levels
are higher in naked mole-rats in comparison with physiologically
age-matched mice (Andziak et al., 2005, 2006; Pérez et al.,
2009). Naked mole-rats can live for more than 30 years; they
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FIGURE 3 | Protein homeostasis capacity in animal species correlates with lifespan A decline in protein homeostasis due to increased oxidative stress, reduced
proteome stability, reduced expression and activity of ATP-dependent chaperones and reduced protein degradation, has been associated with protein misfolding
and the formation of insoluble protein aggregates. Naturally evolved long-living animal species (bivalve mollusk Arctica islandica, some bat species and naked
mole-rats) have reduced their ROS production, increased their proteome stability and/or optimized protein folding and degradation pathways for a longer and
healthier life. Also long-living daf-2 mutant Caenorhabditis elegans models (∗) have lower oxidative stress levels.

have negligible senescence and are resistant to cancer and
other age-related diseases (Buffenstein, 2008; Edrey et al., 2011,
2013; Azpurua et al., 2013; Tian et al., 2013). Surprisingly,
despite their elevated oxidative stress levels, activities of Cu/Zn
superoxide dismutase, Mn superoxide dismutase, catalase and
cellular glutathione peroxidase are not higher in naked mole-rats

than in mice, and levels do not change with aging (Andziak
et al., 2005, 2006). This has also been observed in certain long-
living bird and bat species, and contradicts the oxidative stress
hypothesis of aging (Andziak et al., 2006; Munshi-South and
Wilkinson, 2010). High oxidative stress levels are expected to
increase damage to DNA and lipids, and increase production
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of misfolded proteins. Indeed, damage to DNA, lipids, and
proteins was higher in naked mole-rats than in mice (Andziak
et al., 2006). The lack of elevated antioxidant levels indicates
that other mechanisms are responsible for the long lifespan and
resistance to aging in these animals. A recent study indicates the
contribution of elevated expression of peroxiredoxin 1 (PRDX1)
and thioredoxin reductase 1 (TXNRD1) in the liver of naked
mole-rats to their long lifespan (Heinze et al., 2018). PRDX1
and TXNRD1 are known for their ROS buffering capacities
and their ability to promote protein homeostasis (Heinze et al.,
2018). PRDX1 and TXNRD1 are targets of the transcription
factor erythroid2-related factor 2 NFE2L2, which regulates the
transcription of cytoprotective factors, and activation of NFE2L2
correlates with life expectancy (Malhotra et al., 2010; Lewis
et al., 2015). Another mechanism could be the unique split-
ribosome structure and accuracy of these ribosomes, which
significantly improve the translational fidelity in these animals.
This mechanism might, despite higher protein damage levels,
prevent supersaturation of aggregation-prone proteins in naked
mole-rats (Azpurua et al., 2013).

Just like the proteome of A. islandica, the proteomes of naked
mole-rats, Mexican free-tailed bats and cave myotis bats are
very resistant to unfolding stressors like urea (Pérez et al., 2009;
Salmon et al., 2009). In naked mole-rats, however, increased
chaperone levels do seem to play a role in the protection of the
proteome against unfolding stressors. ATP-dependent chaperone
levels were elevated under normal and heat shock conditions
in cultured fibroblasts from naked mole-rats compared with
cells cultured from short-living counterparts (Rodriguez et al.,
2014; Pride et al., 2015). These elevated chaperone levels were
also observed in cells from other long-living animal species,
including sugar gliders, the Australian black flying fox and the
cave nectar bat (Rodriguez et al., 2014, 2016; Pride et al., 2015;
Chionh et al., 2019).

The importance of protein degradation for protein
homeostasis is reflected in the elevated macroautophagy rate
and proteasomal activity in the improved protein homeostasis
network of naked mole-rats (Pérez et al., 2009; Rodriguez et al.,
2014, 2016; Triplett et al., 2015). Particularly interesting is the
stress-resistance of naked mole-rat proteasomes compared
with those of other species. Proteasomes of naked mole-
rats retained their activity after treatment with increasing
concentrations of different proteasome competitive inhibitors,
while mouse proteasomes lost all activity after exposure to
low concentrations of the same inhibitors (Rodriguez et al.,
2014). Interestingly, the proteasomes of naked mole-rats lost
their resistance to proteasomal inhibitors when resuspended in
proteasome-depleted mouse cytosolic extracts (Rodriguez et al.,
2014). Conversely, enhanced resistance and increased levels
of proteasomal activity were observed for mouse, yeast, and
human proteasomes that were resuspended in cytosolic extracts
of naked mole-rats. This indicates that factors specifically
present in the cytosol of naked mole-rats are responsible for the
improved proteolytic resistance and activity. Although the exact
composition of this cytosolic factor remains unknown, inhibition
of Hsp72 and its co-chaperone Hsp40 reduced the activity of
proteasomes, indicating that these factors contribute to resistance

to proteasomal stressors in naked mole rats (Rodriguez et al.,
2014). This is particularly interesting as no Hsp has previously
been described to specifically promote proteasome activity and
to protect proteasomes from proteasome-specific inhibitors. The
contribution of an active proteolytic system to healthy aging has
also been proposed in humans. The expression of proteasomal
components is reduced in aged individuals, whereas expression
in centenarians was found to be similar to the expression levels
in much younger individuals (Chondrogianni et al., 2000).
Increased levels of proteasomal subunits could contribute to a
more efficient degradation of (oxidized) proteins and therefore
to a longer and healthier life.

An improved protein homeostasis in long-living animal
species does not seem to depend on a single pathway, but rather
on a combination of multiple optimized pathways (Figure 3).
Each animal species has its own combination of mechanisms
that protect its proteome from aging. The proteomes of long-
living animal species have been optimized for living under
specific environmental conditions. For example, reduced ROS
production seems beneficial, but not all animals can regulate
this. Bats and birds have to cope with high metabolic rates
during flight (Munshi-South and Wilkinson, 2010), and naked
mole-rats might have to deal with high concentrations of
heavy metals in the soil they are living in (Rodriguez et al.,
2016). Whereas some bats and the bivalve mollusk A. islandica
might have optimized their DNA repair mechanisms and/or
antioxidant levels to prevent protein damage (Brunet-Rossinni,
2004; Podlutsky et al., 2005; Wilhelm Filho et al., 2007; Ungvari
et al., 2013; Huang et al., 2020), naked mole-rats have improved
their refolding and degradation capacities to deal with damaged
proteins (Pérez et al., 2009; Rodriguez et al., 2014, 2016; Pride
et al., 2015; Triplett et al., 2015). Some animal species have
evolved unique mechanisms to prolong their health and lifespan,
as for example the cytosolic factor that promotes proteasome
activity and resistance to proteasomal stressors in naked mole-
rats (Rodriguez et al., 2014). Long-living species generally seem
to have evolved an improved protein structure, strong DNA
repair mechanisms, and more stable proteomes. Multiple studies
indicate that additional, yet unknown mechanisms may increase
protein homeostasis and longevity. For example, better resistance
to protein unfolding could be explained by unknown chaperones
that prevent protein unfolding or the existence of more stable
protein conformations (Pérez et al., 2009; Salmon et al., 2009).
Animal models that are capable of regeneration like the flatworm
Macrostomum lignano or immortal cell lines might also extend
our knowledge about the role of protein homeostasis in longevity
(Vilchez et al., 2012a; Noormohammadi et al., 2016; Mouton
et al., 2018). Recent studies have revealed that genes that
are associated with increased longevity in other organisms are
naturally upregulated with age in the long-living, regeneration-
capable flatworm M. lignano (Mouton et al., 2018). Further
identification of genes that are upregulated in this animal model
and their role in protein homeostasis pathways could contribute
to our knowledge about how protein homeostasis affects aging.
In addition, enhanced expression of the CCT8 subunit of the
chaperonin TRiC/CCT complex was shown to play an important
role in proteome stability in human pluripotent stem cells. Upon
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differentiation, CCT8 levels decrease and differentiated cells
become more susceptible to a decline in protein homeostasis and
aging (Noormohammadi et al., 2016).

CONCLUSION

To prevent or delay age-related diseases, we need to understand
the underlying mechanisms that are involved in aging and
disease. Understanding the differences in protein homeostasis
between closely related animal species with different lifespans
is a useful way of acquiring knowledge about the mechanisms
of aging. A healthy, long life is clearly not dependent on the
optimization of a single pathway. The multiple adaptations in
the naked mole-rat which increase its resistance to cancer and
neurodegenerative diseases are a clear example of this. The use
of naturally long-living animal species like bivalve mollusks,
bats, and naked mole-rats may also uncover ways to improve
health and prolong lifespan. Further research of long-living
animal models may therefore contribute to uncover the pathways
that are involved in preventing amyloid formation and toxic
sequestration of aggregation-prone proteins. These studies might

help us understand these pathways and allow us to develop
strategies to suppress age-related protein toxicity.
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