48 research outputs found

    A microphysiological system model of therapy for liver micrometastases

    Get PDF
    Metastasis accounts for almost 90% of cancer-associated mortality. The effectiveness of cancer therapeutics is limited by the protective microenvironment of the metastatic niche and consequently these disseminated tumors remain incurable. Metastatic disease progression continues to be poorly understood due to the lack of appropriate model systems. To address this gap in understanding, we propose an all-human microphysiological system that facilitates the investigation of cancer behavior in the liver metastatic niche. This existing LiverChip is a 3D-system modeling the hepatic niche; it incorporates a full complement of human parenchymal and non-parenchymal cells and effectively recapitulates micrometastases. Moreover, this system allows real-time monitoring of micrometastasis and assessment of human-specific signaling. It is being utilized to further our understanding of the efficacy of chemotherapeutics by examining the activity of established and novel agents on micrometastases under conditions replicating diurnal variations in hormones, nutrients and mild inflammatory states using programmable microdispensers. These inputs affect the cues that govern tumor cell responses. Three critical signaling groups are targeted: the glucose/insulin responses, the stress hormone cortisol and the gut microbiome in relation to inflammatory cues. Currently, the system sustains functioning hepatocytes for a minimum of 15 days; confirmed by monitoring hepatic function (urea, α-1-antitrypsin, fibrinogen, and cytochrome P450) and injury (AST and ALT). Breast cancer cell lines effectively integrate into the hepatic niche without detectable disruption to tissue, and preliminary evidence suggests growth attenuation amongst a subpopulation of breast cancer cells. xMAP technology combined with systems biology modeling are also employed to evaluate cellular crosstalk and illustrate communication networks in the early microenvironment of micrometastases. This model is anticipated to identify new therapeutic strategies for metastasis by elucidating the paracrine effects between the hepatic and metastatic cells, while concurrently evaluating agent efficacy for metastasis, metabolism and tolerability.National Institutes of Health (U.S.) (Grant 1UH2TR000496-01)United States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (W911NF-12-2-0039

    All-human microphysical model of metastasis therapy

    Get PDF
    The vast majority of cancer mortalities result from distant metastases. The metastatic microenvironment provides unique protection to ectopic tumors as the primary tumors often respond to specific agents. Although significant interventional progress has been made on primary tumors, the lack of relevant accessible model in vitro systems in which to study metastases has plagued metastatic therapeutic development - particularly among micrometastases. A real-time, all-human model of metastatic seeding and cancer cells that recapitulate metastatic growth and can be probed in real time by a variety of measures and challenges would provide a critical window into the pathophysiology of metastasis and pharmacology of metastatic tumor resistance. To achieve this we are advancing our microscale bioreactor that incorporates human hepatocytes, human nonparenchymal liver cells, and human breast cancer cells to mimic the hepatic niche in three dimensions with functional tissue. This bioreactor is instrumented with oxygen sensors, micropumps capable of generating diurnally varying profiles of nutrients and hormones, while enabling real-time sampling. Since the liver is a major metastatic site for a wide variety of carcinomas and other tumors, this bioreactor uniquely allows us to more accurately recreate the human metastatic microenvironment and probe the paracrine effects between the liver parenchyma and metastatic cells. Further, as the liver is the principal site of xenobiotic metabolism, this reactor will help us investigate the chemotherapeutic response within a metabolically challenged liver microenvironment. This model is anticipated to yield markers of metastatic behavior and pharmacologic metabolism that will enable better clinical monitoring, and will guide the design of clinical studies to understand drug efficacy and safety in cancer therapeutics. This highly instrumented bioreactor format, hosting a growing tumor within a microenvironment and monitoring its responses, is readily transferable to other organs, giving this work impact beyond the liver. © 2013 BioMed Central Ltd

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Consigli per evitare l'alternanza produttiva di Fuji

    Get PDF
    This study investigates Chinese consumers' responses to foreign and domestic sponsors engaged in the Beijing Olympic Games. It identifies direct causal relationships between consumer ethnocentrism, attitudes towards the sponsor and product judgement. Findings reveal that event involvement mediates the positive relationship between consumer ethnocentrism and attitudes towards the domestic sponsor. Attitudes towards foreign sponsors are found to be a significant mediator in the relationship between consumer ethnocentrism and judgements of the sponsors' products. Theoretical and managerial implications are discussed
    corecore