7 research outputs found

    An Online Toolkit for Applications Featuring Collaborative Robots Across Different Domains

    Get PDF
    Collaborative robots (cobots) are being applied in areas such as healthcare, rehabilitation, agriculture and logistics, beyond the typical manufacturing setting. This is leading to a marked increase in the number of cobot stakeholders with little or no experience in traditional safety engineering. Considering the importance of human safety in collaborative robotic applications, this is currently proving to be a barrier to more widespread cobot usage. A web-based Toolkit that targets cobot end-users and manufacturers with varying levels of safety expertise was developed, helping them to understand how to consider the safety of their cobot applications. In this work, we will provide an overview of the state of the art for ensuring cobot safety, highlight the support provided by the “COVR Toolkit” and introduce three examples where third parties applied the Toolkit for their collaborative robotics application

    A Robot based Hybrid Lower-Limb System for Assist-As-Needed Rehabilitation of Stroke Patients:Technical Evaluation and Clinical Feasibility

    Get PDF
    Background: Although early rehabilitation is important following a stroke, severely affected patients have limited options for intensive rehabilitation as they are often bedridden. To create a system for early rehabilitation of lower extremities in severely affected patients, we have combined the robotic manipulator ROBERT® and EMG-triggered FES and developed a novel user-driven Assist- As-Needed (AAN) control approach. The method is based on a state machine that can detect user movement capability and provide different levels of assistance, as required by the patient (no support, FES only, and simultaneous FES and mechanical support). Methods: To technically validate the system, we tested 10 able-bodied participants who were instructed to perform specific behaviors to trigger the desired system states while conducting knee extension and ankle dorsal flexion exercise. In addition, the system was tested on two stroke patients to establish the clinical feasibility. Results: The technical validation showed that the state machine correctly detected the participants’ behavior and activated the target AAN state in more than 96% of the exercise repetitions. The clinical feasibility test showed that the system successfully recognized the patients’ movement capacity and activated assistive states according to their needs, providing the minimal level of support required to perform the exercise successfully. Conclusions: The system was technically validated and preliminarily proven clinically feasible. The present study shows that the novel system can be used to deliver exercises with a high number of repetitions while engaging the participants’ residual capabilities through an effective AAN strategy.</p

    Evaluation of upper extremity neurorehabilitation using technology: A European Delphi consensus study within the EU COST Action Network on Robotics for Neurorehabilitation

    Get PDF
    Background: The need for cost-effective neurorehabilitation is driving investment into technologies for patient assessment and treatment. Translation of these technologies into clinical practice is limited by a paucity of evidence for cost-effectiveness. Methodological issues, including lack of agreement on assessment methods, limit the value of meta-analyses of trials. In this paper we report the consensus reached on assessment protocols and outcome measures for evaluation of the upper extremity in neurorehabilitation using technology. The outcomes of this research will be part of the development of European guidelines. Methods: A rigorous, systematic and comprehensive modified Delphi study incorporated questions and statements generation, design and piloting of consensus questionnaire and five consensus experts groups consisting of clinicians, clinical researchers, non-clinical researchers, and engineers, all with working experience of neurological assessments or technologies. For data analysis, two major groups were created: i) clinicians (e.g., practicing therapists and medical doctors) and ii) researchers (clinical and non-clinical researchers (e.g. movement scientists, technology developers and engineers). Results: Fifteen questions or statements were identified during an initial ideas generation round, following which the questionnaire was designed and piloted. Subsequently, questions and statements went through five consensus rounds over 20 months in four European countries. Two hundred eight participants: 60 clinicians (29 %), 35 clinical researchers (17 %), 77 non-clinical researchers (37 %) and 35 engineers (17 %) contributed. At each round questions and statements were added and others removed. Consensus (≥69 %) was obtained for 22 statements on i) the perceived importance of recommendations; ii) the purpose of measurement; iii) use of a minimum set of measures; iv) minimum number, timing and duration of assessments; v) use of technology-generated assessments and the restriction of clinical assessments to validated outcome measures except in certain circumstances for research. Conclusions: Consensus was reached by a large international multidisciplinary expert panel on measures and protocols for assessment of the upper limb in research and clinical practice. Our results will inform the development of best practice for upper extremity assessment using technologies, and the formulation of evidence-based guidelines for the evaluation of upper extremity neurorehabilitation

    User acceptance of a therapeutic system that enables hand training exercises in a motivating environment

    No full text
    In this study, a wearable soft-robotic glove that is connected to a computer with therapeutic software to train hand function (the ironHand therapeutic system, iH TS) is introduced. This study explored usability of the iH TS after first use without receiving instructions from researchers. The results on the System Usability Scale (SUS) are promising for acceptance of the iH TS in daily life (mean SUS scoreÂ\ua0=Â\ua066.4). More research is needed to determine user acceptance and the effects of the therapeutic hand exercises after a longer acquaintance period

    Wearable Physical Activity Tracking Systems for Older Adults—A Systematic Review

    No full text
    corecore