516 research outputs found
Bio-nanotechnology application in wastewater treatment
The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed
Recommended from our members
Comparison of herbarium label data and published medicinal use: herbaria as an underutilized source of ethnobotanical information
The use of herbarium specimens as vouchers to support ethnobotanical surveys is well established. However,
herbaria may be underutilized resources for ethnobotanical research that depends on the analysis of large datasets compiled across multiple sites. Here, we compare two medicinal use datasets, one sourced from
published papers and the other from online herbaria to determine whether herbarium and published data
are comparable and to what extent herbarium specimens add new data and fill gaps in our knowledge of
geographical extent of plant use. Using Brazilian legumes as a case study, we compiled 1400 use reports from
105 publications and 15 Brazilian herbaria. Of the 319 species in 107 genera with cited medicinal uses, 165
(51%) were recorded only in the literature and 55 (17%) only on herbarium labels. Mode of application,
plant part used, or therapeutic use was less often documented by herbarium specimen labels (17% with
information) than publications (70%). However, medicinal use of 21 of the 128 species known from only
one report in the literature was substantiated from independently collected herbarium specimens, and 58
new therapeutic applications, 25 new plant parts, and 16 new modes of application were added for species
known from the literature. Thus, when literature reports are few or information-poor, herbarium data can
both validate and augment these reports. Herbarium data can also provide insights into the history and
geographical extent of use that are not captured in publications
Towards a science of climate and energy choices
The linked problems of energy sustainability and climate change are among the most complex and daunting facing humanity at the start of the twenty-first century. This joint Nature Energy and Nature Climate Change Collection illustrates how understanding and addressing these problems will require an integrated science of coupled human and natural systems; including technological systems, but also extending well beyond the domain of engineering or even economics. It demonstrates the value of replacing the stylized assumptions about human behaviour that are common in policy analysis, with ones based on data-driven science. We draw from and engage articles in the Collection to identify key contributions to understanding non-technological factors connecting economic activity and greenhouse gas emissions, describe a multi-dimensional space of human action on climate and energy issues, and illustrate key themes, dimensions and contributions towards fundamental understanding and informed decision making
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
Selective blockade of interferon-α and -β reveals their non-redundant functions in a mouse model of West Nile virus infection
Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-β and the multiple subtypes of IFN-α, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-α and IFN-β have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-α has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-β or multiple subtypes of murine IFN-α. Using these mAbs, we distinguish specific contributions of IFN-β versus IFN-α in restricting viral pathogenesis and identify IFN-α as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-β versus IFN-α in murine models of infection, immunity, and autoimmunity
Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca2+ channel (Cav1.2) and reduce Ca2+-dependent inactivation.
Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship. Our study focuses on the L-type calcium channel Cav1.2, a crucial component of the ventricular action potential and excitation-contraction coupling.
Methods. We used circular dichroism (CD), 15N HSQC NMR, and trypsin digestion to determine the structural and stability properties of CaM variants. The affinity of CaM for Ca2+ and interaction of Ca2+/CaM with Cav1.2 (IQ and NSCaTE domains) were investigated using intrinsic tyrosine fluorescence and isothermal titration calorimetry (ITC), respectively. The effect of CaM variants of Cav1.2 activity was determined using HEK293-Cav1.2 cells (B'SYS) and whole-cell patch-clamp electrophysiology.
Results. Using a combination of protein biophysics and structural biology, we show that the disease-associated mutations D131E and Q135P mutations alter apo/CaM structure and stability. In the Ca2+-bound state, D131E and Q135P exhibited reduced Ca2+ binding affinity, significant structural changes, and altered interaction with Cav1.2 domains (increased affinity for Cav1.2-IQ and decreased affinity for Cav1.2-NSCaTE). We show that the mutations dramatically impair Ca2+-dependent inactivation (CDI) of Cav1.2, which would contribute to abnormal Ca2+ influx, leading to disrupted Ca2+ handling, characteristic of cardiac arrhythmia syndromes.
Conclusions. These findings provide insights into the molecular mechanisms behind arrhythmia caused by calmodulin mutations, contributing to our understanding of cardiac syndromes at a molecular and cellular level
Current practice of neonatal resuscitation documentation in North America: a multi-center retrospective chart review
Alcohol Use Disorders (AUD) among Tuberculosis Patients: A Study from Chennai, South India
BACKGROUND: Alcohol Use Disorders (AUDs) among tuberculosis (TB) patients are associated with nonadherence and poor treatment outcomes. Studies from Tuberculosis Research Centre (TRC), Chennai have reported that alcoholism has been one of the major reasons for default and mortality in under the DOTS programme in South India. Hence, it is planned to conduct a study to estimate prevalence of alcohol use and AUDs among TB patients attending the corporation health centres in Chennai, India. METHODOLOGY: This is a cross-sectional cohort study covering 10 corporation zones at Chennai and it included situational assessment followed by screening of TB patients by a WHO developed Alcohol Use Disorders Identification Test AUDIT scale. Four zones were randomly selected and all TB patients treated during July to September 2009 were screened with AUDIT scale for alcohol consumption. RESULTS: Out of 490 patients, 66% were males, 66% were 35 years and above, 57% were married, 58% were from the low monthly income group of <Rs 5000 per month. No females reported alcohol use. Overall, out of 490 TB pts, 29% (141) were found to consume alcohol. Among 141 current drinkers 52% (73) had an AUDIT score of >8. Age (>35 years), education (less educated), income (<Rs 5000 per month), marital status (separated/divorced) and treatment category (Category 2) were statistically significant for TB patients with alcohol use than those TB patients without alcohol use. CONCLUSIONS: AUD among TB patients needs to be addressed urgently and the findings suggest the importance of integrating alcohol treatment into TB care
Null Mutations in EphB Receptors Decrease Sharpness of Frequency Tuning in Primary Auditory Cortex
Primary auditory cortex (A1) exhibits a tonotopic representation of characteristic frequency (CF). The receptive field properties of A1 neurons emerge from a combination of thalamic inputs and intracortical connections. However, the mechanisms that guide growth of these inputs during development and shape receptive field properties remain largely unknown. We previously showed that Eph family proteins help establish tonotopy in the auditory brainstem. Moreover, other studies have shown that these proteins shape topography in visual and somatosensory cortices. Here, we examined the contribution of Eph proteins to cortical organization of CF, response thresholds and sharpness of frequency tuning. We examined mice with null mutations in EphB2 and EphB3, as these mice show significant changes in auditory brainstem connectivity. We mapped A1 using local field potential recordings in adult EphB2−/−;EphB3−/− and EphB3−/− mice, and in a central A1 location inserted a 16-channel probe to measure tone-evoked current-source density (CSD) profiles. Based on the shortest-latency current sink in the middle layers, which reflects putative thalamocortical input, we determined frequency receptive fields and sharpness of tuning (Q20) for each recording site. While both mutant mouse lines demonstrated increasing CF values from posterior to anterior A1 similar to wild type mice, we found that the double mutant mice had significantly lower Q20 values than either EphB3−/− mice or wild type mice, indicating broader tuning. In addition, we found that the double mutants had significantly higher CF thresholds and longer onset latency at threshold than mice with wild type EphB2. These results demonstrate that EphB receptors influence auditory cortical responses, and suggest that EphB signaling has multiple functions in auditory system development
Phyllanthus spp. Induces Selective Growth Inhibition of PC-3 and MeWo Human Cancer Cells through Modulation of Cell Cycle and Induction of Apoptosis
BACKGROUND: Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Phyllanthus plant appears to possess cytotoxic properties with half-maximal inhibitory concentration (IC(50)) values of 150-300 µg/ml for aqueous extract and 50-150 µg/ml for methanolic extract that were determined using the MTS reduction assay. In comparison, the plant extracts did not show any significant cytotoxicity on normal human skin (CCD-1127Sk) and prostate (RWPE-1) cells. The extracts appeared to act by causing the formation of a clear "ladder" fragmentation of apoptotic DNA on agarose gel, displayed TUNEL-positive cells with an elevation of caspase-3 and -7 activities. The Lactate Dehydrogenase (LDH) level was lower than 15% in Phyllanthus treated-cancer cells. These indicate that Phyllanthus extracts have the ability to induce apoptosis with minimal necrotic effects. Furthermore, cell cycle analysis revealed that Phyllanthus induced a Go/G1-phase arrest on PC-3 cells and a S-phase arrest on MeWo cells and these were accompanied by accumulation of cells in the Sub-G1 (apoptosis) phase. The cytotoxic properties may be due to the presence of polyphenol compounds such as ellagitannins, gallotannins, flavonoids and phenolic acids found both in the water and methanol extract of the plants. CONCLUSIONS/SIGNIFICANCE: Phyllanthus plant exerts its growth inhibition effect in a selective manner towards cancer cells through the modulation of cell cycle and induction of apoptosis via caspases activation in melanoma and prostate cancer cells. Hence, Phyllanthus may be sourced for the development of a potent apoptosis-inducing anticancer agent
- …
