1,418 research outputs found
Real-time detection of anomalous paths through networks
Ponencias, comunicaciones y pósters presentados en el 17th AGILE Conference on Geographic Information Science
"Connecting a Digital Europe through Location and Place", celebrado en la Universitat Jaume I del 3 al 6 de junio de 2014.The proliferation of increasingly inexpensive mobile devices capable of transmitting accurate positional information to other devices and servers has led to a variety of applications ranging from health situation monitoring to GPS-based offender monitoring. One of the resultant challenges is in understanding, in real-time, when incoming observations merit further examination. In this research, we investigate an approach for identifying anomalous paths through networks using real-time comparisons to a previously learned model. Our approach, the development of a series of “posterior weighted graphs” allows us to both determine which underlying model a particular path most closely represents as well as evaluate this relationship in real-time as more observations become available. Here we present the posterior weighted graph approach for examining path similarity and an extension for detecting anomalies in real-time. Our results illustrate how we can distinguish from among multiple candidate paths and, likewise, when observations no longer match an expected model
Rock Response in a 12-M Tunnel through a Zone of Low Strength
At the Rocky Mountain Pumped Storage Project a 12 meter diameter power tunnel was excavated through sedimentary rock for 760 meters. Approximately 10% of this tunnel was through Pennington shale that is described as a dark gray massive organic shale. This paper will describe the methods of testing .and rock characterization, the results of instrumentation and monitoring, and the post-construction testing program for the excavation, and conclude with a discussion of the observed rock response in relation to the measured strength and deformation properties. This particular zone of the tunnel required the addition of longer rockbolts, and a discussion of that supplemental rock reinforcement will be included
Prevalence of qacA/B genes and mupirocin resistance among methicillin-resistant Staphylococcus aureus (MRSA) isolates in the setting of chlorhexidine bathing without mupirocin
OBJECTIVE: We aimed to determine the frequency of qacA/B chlorhexidine tolerance genes and high-level mupirocin resistance among MRSA isolates before and after the introduction of a chlorhexidine (CHG) daily bathing intervention in a surgical intensive care unit (SICU). DESIGN: Retrospective cohort study (2005–2012) SETTING: A large tertiary-care center PATIENTS: Patients admitted to SICU who had MRSA surveillance cultures of the anterior nares METHODS: A random sample of banked MRSA anterior nares isolates recovered during (2005) and after (2006–2012) implementation of a daily CHG bathing protocol was examined for qacA/B genes and high-level mupirocin resistance. Staphylococcal cassette chromosome mec (SCCmec) typing was also performed. RESULTS: Of the 504 randomly selected isolates (63 per year), 36 (7.1%) were qacA/B positive ( + ) and 35 (6.9%) were mupirocin resistant. Of these, 184 (36.5%) isolates were SCCmec type IV. There was a significant trend for increasing qacA/B (P= .02; highest prevalence, 16.9% in 2009 and 2010) and SCCmec type IV (P< .001; highest prevalence, 52.4% in 2012) during the study period. qacA/B( + ) MRSA isolates were more likely to be mupirocin resistant (9 of 36 [25%] qacA/B( + ) vs 26 of 468 [5.6%] qacA/B(−); P= .003). CONCLUSIONS: A long-term, daily CHG bathing protocol was associated with a change in the frequency of qacA/B genes in MRSA isolates recovered from the anterior nares over an 8-year period. This change in the frequency of qacA/B genes is most likely due to patients in those years being exposed in prior admissions. Future studies need to further evaluate the implications of universal CHG daily bathing on MRSA qacA/B genes among hospitalized patients
Effect of the C-bridge length on the ultraviolet-resistance of oxycarbosilane low-k films
The ultra-violet (UV) and vacuum ultra-violet (VUV) resistance of bridging alkylene groups in organosilica films has been investigated. Similar to the Si-CH3 (methyl) bonds, the Si-CH2-Si (methylene) bonds are not affected by 5.6 eV irradiation. On the other hand, the concentration of the Si-CH2-CH2-Si (ethylene) groups decreases during such UV exposure. More significant difference in alkylene reduction is observed when the films are exposed to VUV (7.2 eV). The ethylene groups are depleted by more than 75% while only about 40% methylene and methyl groups loss is observed. The different sensitivity of bridging groups to VUV light should be taken into account during the development of curing and plasma etch processes of low-k materials based on periodic mesoporous organosilicas and oxycarbosilanes. The experimental results are qualitatively supported by ab-initio quantum-chemical calculations
Phase velocity and phase diffusion in periodically driven discrete state systems
We develop a theory to calculate the effective phase diffusion coefficient
and the mean phase velocity in periodically driven stochastic models with two
discrete states. This theory is applied to a dichotomically driven Markovian
two state system. Explicit expressions for the mean phase velocity, the
effective phase diffusion coefficient and the P\'eclet number are analytically
calculated. The latter shows as a measure of phase-coherence forced
synchronization of the stochastic system with respect to the periodic driving.
In a second step the theory is applied to a non Markovian two state model
modeling excitable systems. The results prove again stochastic synchronization
to the periodic driving and are in good agreement with simulations of a
stochastic FitzHugh-Nagumo system.Comment: 11 pages, 7 figure
Drift and Diffusion in Periodically Driven Renewal Processes
We consider the drift and diffusion properties of periodically driven renewal
processes. These processes are defined by a periodically time dependent waiting
time distribution, which governs the interval between subsequent events. We
show that the growth of the cumulants of the number of events is asymptotically
periodic and develop a theory which relates these periodic growth coefficients
to the waiting time distribution defining the periodic renewal process. The
first two coefficients, which are the mean frequency and effective diffusion
coefficient of the number of events are considered in greater detail. They may
be used to quantify stochastic synchronization.Comment: 29 pages, 6 figures, submitted to Journal of Statistical Physic
Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing
Large-scale molecular simulations are performed to investigate tensile
failure of polymer interfaces as a function of welding time . Changes in the
tensile stress, mode of failure and interfacial fracture energy are
correlated to changes in the interfacial entanglements as determined from
Primitive Path Analysis. Bulk polymers fail through craze formation, followed
by craze breakdown through chain scission. At small welded interfaces are
not strong enough to support craze formation and fail at small strains through
chain pullout at the interface. Once chains have formed an average of about one
entanglement across the interface, a stable craze is formed throughout the
sample. The failure stress of the craze rises with welding time and the mode of
craze breakdown changes from chain pullout to chain scission as the interface
approaches bulk strength. The interfacial fracture energy is calculated
by coupling the simulation results to a continuum fracture mechanics model. As
in experiment, increases as before saturating at the average
bulk fracture energy . As in previous simulations of shear strength,
saturation coincides with the recovery of the bulk entanglement density. Before
saturation, is proportional to the areal density of interfacial
entanglements. Immiscibiltiy limits interdiffusion and thus suppresses
entanglements at the interface. Even small degrees of immisciblity reduce
interfacial entanglements enough that failure occurs by chain pullout and
Stochastic resonance in a non Markovian discrete state model for excitable systems
We study a non Markovian three state model, subjected to an external periodic
signal. This model is intended to describe an excitable systems with periodical
driving. In the limit of a small amplitude of the external signal we derive
expressions for the spectral power amplification and the signal to noise ratio
as well as for the inter-spike interval distribution.Comment: 5 pages, 3 figure
Mode-multiplexing deep-strong light-matter coupling
Dressing quantum states of matter with virtual photons can create exotic
effects ranging from vacuum-field modified transport to polaritonic chemistry,
and may drive strong squeezing or entanglement of light and matter modes. The
established paradigm of cavity quantum electrodynamics focuses on resonant
light-matter interaction to maximize the coupling strength
, defined as the ratio of the vacuum Rabi
frequency and the carrier frequency of light. Yet, the finite oscillator
strength of a single electronic excitation sets a natural limit to
. Here, we demonstrate a new regime of
record-strong light-matter interaction which exploits the cooperative dipole
moments of multiple, highly non-resonant magnetoplasmon modes specifically
tailored by our metasurface. This multi-mode coupling creates an ultrabroadband
spectrum of over 20 polaritons spanning 6 optical octaves, vacuum ground state
populations exceeding 1 virtual excitation quantum for electronic and optical
modes, and record coupling strengths equivalent to
. The extreme interaction drives
strongly subcycle exchange of vacuum energy between multiple bosonic modes akin
to high-order nonlinearities otherwise reserved to strong-field physics, and
entangles previously orthogonal electronic excitations solely via vacuum
fluctuations of the common cavity mode. This offers avenues towards tailoring
phase transitions by coupling otherwise non-interacting modes, merely by
shaping the dielectric environment
Liesegang patterns: Effect of dissociation of the invading electrolyte
The effect of dissociation of the invading electrolyte on the formation of
Liesegang bands is investigated. We find, using organic compounds with known
dissociation constants, that the spacing coefficient, 1+p, that characterizes
the position of the n-th band as x_n ~ (1+p)^n, decreases with increasing
dissociation constant, K_d. Theoretical arguments are developed to explain
these experimental findings and to calculate explicitly the K_d dependence of
1+p.Comment: RevTex, 8 pages, 3 eps figure
- …