215 research outputs found

    Programming Languages shouldn't be "too Natural"

    Get PDF
    Despite much research on programming language principles, most often the design of modern languages ignores such principles which results in cumbersome, hard to understand, and error-prone code. We substantiate our claim through a short sampling of the features of some widely used languages and by referring to other criticisms widely publicized in the literature. We argue that a major reason of such an unpleasant state of the art is that programming languages evolve in a way that too much resembles that of natural languages. We advocate a different attitude in programming language design, going back to essentiality and rigorous application of few basic, well-chosen principles

    ArchiTRIO: a UML-compatible language for architectural description and its formal semantics

    Get PDF
    ArchiTRIO [14] is a formal language, which complements UML 2.0 concepts with a formal, logic-based notation that allows users to state system-wide properties, both static and dynamic, including real- time constraints. In this paper we present the semantics of the core con- cepts of the ArchiTRIO language. As the core elements of ArchiTRIO coincide with those of UML 2.0 (operation, interface, port, class), the semantics of ArchiTRIO provides also a formal definition for the basic concepts on which UML 2.0 is built

    APERIODICITY, STAR-FREENESS, AND FIRST-ORDER LOGIC DEFINABILITY OF OPERATOR PRECEDENCE LANGUAGES

    Get PDF
    A classic result in formal language theory is the equivalence among non-counting, or aperiodic, regular languages, and languages defined through star-free regular expressions, or first-order logic. Past attempts to extend this result beyond the realm of regular languages have met with difficulties: for instance it is known that star-free tree languages may violate the non-counting property and there are aperiodic tree languages that cannot be defined through first-order logic. We extend such classic equivalence results to a significant family of deterministic context-free languages, the operator-precedence languages (OPL), which strictly includes the widely investigated visibly pushdown, alias input-driven, family and other structured context-free languages. The OP model originated in the ’60s for defining programming languages and is still used by high performance compilers; its rich algebraic properties have been investigated initially in connection with grammar learning and recently completed with further closure properties and with monadic second order logic definition. We introduce an extension of regular expressions, the OP-expressions (OPE) which define the OPLs and, under the star-free hypothesis, define first-order definable and non-counting OPLs. Then, we prove, through a fairly articulated grammar transformation, that aperiodic OPLs are first-order definable. Thus, the classic equivalence of star-freeness, aperiodicity, and first-order definability is established for the large and powerful class of OPLs. We argue that the same approach can be exploited to obtain analogous results for visibly pushdown languages too

    A Model Checker for Operator Precedence Languages

    Get PDF
    The problem of extending model checking from finite state machines to procedural programs has fostered much research toward the definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested Words, such as CaRet and NWTL. Recently, Precedence Oriented Temporal Logic (POTL) has been introduced to specify and prove properties of programs coded trough an Operator Precedence Language (OPL). POTL is complete w.r.t. the FO restriction of the MSO logic previously defined as a logic fully equivalent to OPL. POTL increases NWTL's expressive power in a perfectly parallel way as OPLs are more powerful that nested words.In this article, we produce a model checker, named POMC, for OPL programs to prove properties expressed in POTL. To the best of our knowledge, POMC is the first implemented and openly available model checker for proving tree-structured properties of recursive procedural programs. We also report on the experimental evaluation we performed on POMC on a nontrivial benchmark

    The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale

    Get PDF
    The history of Castanea sativa (sweet chestnut) cultivation since medieval times has been well described on the basis of the very rich documentation available. Far fewer attempts have been made to give a historical synthesis of the events that led to the cultivation of sweet chestnut in much earlier times. In this article we attempt to reconstruct this part of the European history of chestnut cultivation and its early diffusion by use of different sources of information, such as pollen studies, archaeology, history and literature. Using this multidisciplinary approach, we have tried to identify the roles of the Greek and Roman civilizations in the dissemination of chestnut cultivation on a European scale. In particular, we show that use of the chestnut for food was not the primary driving force behind the introduction of the tree into Europe by the Romans. Apart from the Insubrian Region in the north of the Italian peninsula, no other centre of chestnut cultivation existed in Europe during the Roman period. The Romans may have introduced the idea of systematically cultivating and using chestnut. In certain cases they introduced the species itself; however no evidence of systematic planting of chestnut exists. The greatest interest in the management of chestnut for fruit production most probably developed after the Roman period and can be associated with the socio-economic structures of medieval times. It was then that self-sufficient cultures based on the cultivation of chestnut as a source of subsistence were forme

    A Theory of Sampling for Continuous-time Metric Temporal Logic

    Full text link
    This paper revisits the classical notion of sampling in the setting of real-time temporal logics for the modeling and analysis of systems. The relationship between the satisfiability of Metric Temporal Logic (MTL) formulas over continuous-time models and over discrete-time models is studied. It is shown to what extent discrete-time sequences obtained by sampling continuous-time signals capture the semantics of MTL formulas over the two time domains. The main results apply to "flat" formulas that do not nest temporal operators and can be applied to the problem of reducing the verification problem for MTL over continuous-time models to the same problem over discrete-time, resulting in an automated partial practically-efficient discretization technique.Comment: Revised version, 43 pages

    Gastrointestinal neuroendocrine neoplasms (GI-NENs): hot topics in morphological, functional, and prognostic imaging

    Get PDF
    Neuroendocrine neoplasms (NENs) are heterogeneous tumours with a common phenotype descended from the diffuse endocrine system. NENs are found nearly anywhere in the body but the most frequent location is the gastrointestinal tract. Gastrointestinal neuroendocrine neoplasms (GI-NENs) are rather uncommon, representing around 2% of all gastrointestinal tumours and 20–30% of all primary neoplasms of the small bowel. GI-NENs have various clinical manifestations due to the different substances they can produce; some of these tumours appear to be associated with familial syndromes, such as multiple endocrine neoplasm and neurofibromatosis type 1. The current WHO classification (2019) divides NENs into three major categories: well-differentiated NENs, poorly differentiated NENs, and mixed neuroendocrine-non-neuroendocrine neoplasms. The diagnosis, localization, and staging of GI-NENs include morphology and functional imaging, above all contrast-enhanced computed tomography (CECT), and in the field of nuclear medicine imaging, a key role is played by (68)Ga-labelled-somatostatin analogues ((68)Ga-DOTA-peptides) positron emission tomography/computed tomography (PET/TC). In this review of recent literature, we described the objectives of morphological/functional imaging and potential future possibilities of prognostic imaging in the assessment of GI-NENs

    Ultrasound-guided percutaneous irrigation of calcific tendinopathy: Technical developments

    Get PDF
    Rotator cuff calcific tendinopathy (RCCT) is a common and painful shoulder disease character-ised by deposition of calcium into the rotator cuff’s tendond. Different therapeutic options have been proposed, but the ultrasound-guided percutaneous irrigation (US-PICT) is been proved as an effective and safe first-line treatment. It can be performed with a single-of a double-needle tecnique, using warm saline solution to improve the dissolution of the calcific deposit. The procedure is ended with an intrabursal injection of local anaesthetics and slow-release steroids to improve the pain relief and to prevent complications. US-PICT leads to significative improvement in the shoulder funtion and pain relief in the short and long term, with a low complications rate. (www.actabiomedica.it)
    • …
    corecore