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Abstract. A classic result in formal language theory is the equivalence among non-
counting, or aperiodic, regular languages, and languages defined through star-free regular
expressions, or first-order logic. Past attempts to extend this result beyond the realm of
regular languages have met with difficulties: for instance it is known that star-free tree
languages may violate the non-counting property and there are aperiodic tree languages
that cannot be defined through first-order logic.

We extend such classic equivalence results to a significant family of deterministic context-
free languages, the operator-precedence languages (OPL), which strictly includes the widely
investigated visibly pushdown, alias input-driven, family and other structured context-free
languages. The OP model originated in the ’60s for defining programming languages and is
still used by high performance compilers; its rich algebraic properties have been investigated
initially in connection with grammar learning and recently completed with further closure
properties and with monadic second order logic definition.

We introduce an extension of regular expressions, the OP-expressions (OPE) which define
the OPLs and, under the star-free hypothesis, define first-order definable and non-counting
OPLs. Then, we prove, through a fairly articulated grammar transformation, that aperiodic
OPLs are first-order definable. Thus, the classic equivalence of star-freeness, aperiodicity,
and first-order definability is established for the large and powerful class of OPLs.

We argue that the same approach can be exploited to obtain analogous results for visibly
pushdown languages too.

1. Introduction

From a long time much research effort in the field of formal language theory has been devoted
to extend as much as possible the nice algebraic and logic properties of regular languages
to larger families of languages, typically the context-free (CF) ones or subfamilies thereof.
Regular languages in fact are closed w.r.t. all basic algebraic operations and are characterized
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also in terms of classic monadic second-order (MSO) logic (with the ordering relation between
character positions) [Büc60, Elg61, Tra61], but not so for general CF languages.

On the other hand, some important algebraic and logic properties of regular languages
are preserved by certain subfamilies of the CF languages, that may be referred to as structured
CF languages because the syntax structure is immediately visible in their sentences. Two
first and practically equivalent examples of such languages are parenthesis languages and tree
languages introduced respectively by McNaughton [McN67] and Thatcher [Tha67]. More
recently, visibly pushdown languages (VPL) [AM09], originally introduced as input-driven
languages (IDL) [vV83], height-deterministic [NS07] and synchronized languages [Cau06]
have also been shown to share many important properties of regular languages. In particular
tree languages and VPLs are closed w.r.t. Boolean operations, concatenation, Kleene ∗ and
are characterized in terms of some MSO logic, although such operations and the adopted logic
language are not the same in the two cases. For a complete analysis of structured languages
and how they extend algebraic and logic properties of regular languages, see [MP18].

In this paper we study for structured CF languages three important language fea-
tures, namely the non-counting (NC) or aperiodicity,1 the star-freeness (SF), and the
first-order (FO) logic definability properties, which for regular languages are known to be
equivalent [MP71].

Intuitively, a language has the aperiodicity property if the recognizing device —a finite
state automaton in the case of regular languages— cannot separate two strings that only
differ by the count, modulo an integer greater than 1, of the occurrences of some substring.
Linguists and computer scientists alike have observed that human languages, both natural
and artificial, do not rely on modulo counting. For programming languages the early and
fairly obvious observation that they do not include syntactic constructs based on modulo
counting motivated the definition of non-counting context-free grammar [CGM78], and that
of aperiodic tree languages [Tho84]. The theory of Linguistic Universals [Cho75] postulates
that all human languages have some common features that are necessary for their acquisition
and use. The list of such features has evolved over time and is not agreed upon by everybody.
Some feature lists included the fact that syntactic categories, hence grammaticality of a
sentence, are not based on modulo arithmetic. A possible reason for that is that in noisy
linguistic communication, the interpretation of the message would be very error prone.

SF regular languages are definable through a star-free regular expression (RE), i,e, an
expression composed exclusively by means of Boolean operations and concatenation. FO
logic defined regular languages are characterized by the first-order (FO) restriction of MSO
logic.

The above properties, together with other equivalent ones which are not the object of
the present investigation [MP71], have ignited various important practical applications in
the realm of regular languages. FO definition, in particular, has a tremendous impact on
the success of model-checking algorithms, thanks to the first-order completeness of linear
temporal logic2: most model-checkers of practical usefulness exploit NC languages.

Moving from regular languages to suitable families of structured CF languages is certainly
a well motivated goal: the aperiodicity property, in fact, is perhaps even more important for
CF languages than for regular ones: whereas various hardware devices, e.g., count modulo
some natural number, it is quite unlikely that a programming, a data description, or a

1The two terms are synonyms in the literature, so we will use them interchangeably.
2This result is due to H.W. Kamp. From his thesis several simplified proofs have been derived, e.g., [Rab14].
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natural language exhibits counting features such as forbidding an even number of nested
loops or recursive procedure calls. We could claim that most if not all of CF languages of
practical interest have an aperiodic structure.

Non-counting parenthesis languages were first introduced in [CGM78]. Then, an equiv-
alent definition of aperiodicity in terms of tree languages was given in [Tho84]. It was
immediately clear, however, that the above properties holding for regular word languages do
not extend naturally to regular tree languages: in [Tho84] itself it is shown that SF regular
expressions for tree languages may define even counting languages; this is due to the fact
that string concatenation is replaced by the append operation in tree languages. The same
paper shows further intricacies in the investigation of algebraic and logic characterization
of tree languages. Subsequent studies (e.g., [Heu91, ÉI07, Lan06, Pot95, Pot94]) provided
partial results by investigating algebraic and logic properties of various subclasses of tree
languages. We mention in particular another negative result, i.e., the existence of aperiodic
tree languages that are not FO-definable [Heu91, Pot95]. To summarize, we quote Heuter:
“The equivalence of the notions first-order, star-free and aperiodic for regular word languages
completely fails in the corresponding case of tree languages.”

In contrast, here we show that the three equivalent characterizations holding for NC
regular languages can be extended to the family of operator precedence languages (OPLs).
It is worthwhile to outline their history and their practical and theoretical development.

Invented by R. Floyd [Flo63] to support fast deterministic parsing, operator precedence
grammars (OPG) are still used within modern compilers to parse expressions with operators
ranked by priority. The syntax tree of a sentence is determined by three binary precedence
relations over the terminal alphabet that are easily pre-computed from the grammar pro-
ductions. We classify OPLs as “structured but non-visible” languages since their structure
is implicitly assigned by such precedence relations. For readers unacquainted with OPLs, we
provide a preliminary example: the arithmetic sentence a+ b ∗ c does not make manifest the
natural structure (a+ (b ∗ c)), but the latter is implied by the fact that the plus operator
yields precedence to the times.

Early theoretical investigation [CMM78], originally motivated by grammar inference
goals, realized that, thanks to the tree structure assigned to strings by the precedence
relations, many closure properties of regular languages and other structured CF ones hold
for OPLs too; this despite the fact that, unlike other better known structured languages,
OPLs need a simple parsing process to make their syntax trees explicit. This fact accounts
for the wider generative capacity that makes OPLs suitable to define programming and data
description languages.

After a long intermission, theoretical research [CM12] proved further algebraic properties
of OPLs, thus moving some steps ahead from regular to structured CF languages. At the
same time, it was found that the VPLs are a particular case of the OPLs characterized by
the precedence relations encoded in the 3-partition of their alphabet; OPLs considerably
generalize VPLs while retaining their closure properties. Then in [LMPP15b] the Operator
Precedence automata (OPA) recognizing OPLs were introduced to formalize the efficient
parallel parsing algorithm implemented in [BCM+15]. In the same paper an MSO logic
characterization of OPLs that naturally extends the classic one for regular languages was also
produced. Recently, yet another characterization of regular languages has been extended to
OPLs, namely, in terms of a congruence such that a language is an OPL iff the equivalence
classes of the congruence are finite [HKMS23].
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Thus, OPLs’ potential for practical applications is broader than other structured CF
languages: the following example hints at applications for automatic proof of systems
properties. OPLs with their corresponding MSO logic may be used to specify and prove
properties of software systems where the typical LIFO policy of procedure calls and returns
can be broken by unexpected events such as interrupts or exceptions [LMPP15b, MP18], a
feature that is not available in VPLs and their MSO logic [AF16].

In summary, to the best of our knowledge, OPLs are currently the largest language family
that retains the main closure and decidability properties of regular languages, including a
logical characterization naturally extending the classic one.

We recently realized that a NC subclass of OPLs introduced long ago in the course of
grammar-inference studies [CML73, CM78] is FO logic definable [LMPP15a]. This led us to
the present successful search for equivalent characterizations of aperiodic, star-free and FO
definable OPLs. Our approach is based on two key ideas:

(1) Since the traditional attempt at extending NC regular language properties to tree
languages failed and produced only partial results, we went back to string languages.
Accordingly, we use the operation of string concatenation and not the append operation
of tree languages.

(2) We kept using the MSO logic of our past work [LMPP15b, LMPP15a], which had been
inspired by previous work on CF string languages [LST94] and on VPLs [AM09]. Such
logics too are defined on strings rather than on trees as a natural extension of the
traditional one for regular languages. We examined its restriction to the FO case.

The main results of this paper are:

• The introduction (in Section 3) of operator precedence expressions (OPE) which extend
regular expressions: they add to the classical operations a new one, called fence, that
imposes a matching between two (hidden) parentheses: we show that OPEs define the
OPL family.

• The proof (in Section 4) that the OPLs defined by star-free OPEs coincide with the ones
defined by FO formulas, and (in Section 5) the proof that they have the aperiodicity
property.

• Finally, (in Section 7) the proof that every NC OPL can be defined by means of an FO
formula. The proof, articulated in several lemmas, exploits a regular language control
theorem (in Section 6) which, informally, “splits” the logic formulas defining an OPL into
a part describing its tree-like structure and another part that imposes a regular control on
the strings derived from the grammar’s nonterminal symbols. After a series of nontrivial
transformations of finite automata, we obtain the result that the control language can be
made NC if the original OPL is in turn NC. Thanks to the fact that both parts of the
logic formulas can be defined in FO logic, we obtain the language family identities:

OPLs = OPE-languages = MSO-languages
NC-OPLs = SF-OPE-languages = FO-languages

which extend the classic equivalences for regular languages and could be transposed to
VPLs, by following a similar path.

Section 2 provides the necessary terminology and background on OPLs, aperiodicity, parenthe-
sis languages, MSO and FO logic characterization. The conclusion mentions new application-
oriented developments rooted in the present results, consisting of a suitable, FO-complete,
temporal logic and a model-checker to prove properties of aperiodic OPLs. New directions
for future research are also suggested.
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2. Preliminaries

We assume some familiarity with the classical literature on formal language and automata
theory, e.g., [Sal73, Har78]. Here, we just list and explain our notations for the basic concepts
we use from this theory. The terminal alphabet is usually denoted by Σ, and the empty
string is ε. For a string, or set, x, |x| denotes the length, or the cardinality, of x. The
character #, not present in the terminal alphabet, is used as string delimiter, and we define
the alphabet Σ# = Σ ∪ {#}. Other special symbols augmenting Σ will be introduced in the
following.

2.1. Regular languages: automata, regular expressions, logic.
Finite Automata. A finite automaton (FA) A is defined by a 5-tuple (Q,Σ, δ, I, F ) where Q
is the set of states, δ the state-transition relation (or its graph denoted by −→), δ ⊆ Q×Σ×Q;
I and F are the nonempty subsets of Q respectively comprising the initial and final states.

If the tuple (q, a, q′) is in the relation δ, the edge q
a−−→ q′ is in the graph. The transitive

closure of the relation is defined as usual. Thus, for a string x ∈ Σ∗ such that there is a

path from state q to q′ labeled with x, the notation q
x−−→ q′ is equivalent to (q, x, q′) ∈ δ∗; if

q ∈ I and q′ ∈ F , then the string x is accepted by A. The language of the accepted strings
is denoted by L(A); it is called a regular language.

In this paper we make use of two well-known extensions of the previous FA definition,
both not impacting on the language family recognized. In the first extension, we permit an
edge label to be the empty string; such an edge is called a spontaneous transition or step.
In the second one, an edge label may be a string in Σ+. These two classical extensions are
formalized by letting δδδ ⊆ Q× Σ∗ ×Q, where for clarity, the extended transition relation is
written in boldface. An edge (q, x, q′) ∈ δδδ is called a macro-transition or macro-step and is

denoted by q
x−→−→−→
δδδ

q′. Whenever there will be no risk on ambiguity we will omit the label δδδ

in the edge.

Regular expressions and star-free languages. A regular expression (RE) over an
alphabet Σ is a well-formed formula made with the characters of Σ, ∅, ε, the Boolean
operators ∪,¬,∩, the concatenation ‘·’, and the Kleene star operator ‘∗’. We may also use
the operator ‘+’. When neither ‘∗’ nor ‘+’ are used, the RE is called star-free (SF). An RE
E defines a language over Σ, denoted by L(E).

Monadic second and first order logics to define languages [Tho90]. A monadic second
order (MSO) logic on an alphabet Σ is a well-formed formula made with first and second
order variables interpreted, respectively, as string positions and sets of string positions,
monadic predicates on string positions biunivocally associated to Σ elements, an ordering
relation, and the usual logical connectors and quantifiers. When the logic is restricted to
first-order variables only, it is named an FO-logic.

Non-counting or aperiodic regular languages. A regular language L over Σ is called
non-counting (NC) or aperiodic if there exists an integer n ≥ 1 such that for all x, y, z ∈ Σ∗,
xynz ∈ L iff xyn+mz ∈ L, ∀m ≥ 0.
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Proposition 2.1. Finite automata, regular expressions and MSO logic define the family
of regular (or rational) languages (REG) [Büc60, Elg61, Tra61]. The family of aperiodic
regular languages coincides with the families of languages defined by star-free REs and by
FO-logic [MP71].

2.2. Grammars.

Definition 2.2 (Grammar and language). A (CF) grammar is a tuple G = (Σ, VN , P, S)
where Σ and VN , with Σ ∩ VN = ∅, are resp. the terminal and the nonterminal alphabets,
the total alphabet is V = Σ∪ VN , P ⊆ VN × V ∗ is the rule (or production) set, and S ⊆ VN ,
S ̸= ∅, is the axiom set. For a generic rule, denoted as A → α, where A and α are resp.
called the left/right hand sides (lhs / rhs), the following forms are relevant:

axiomatic : A ∈ S
terminal : α ∈ Σ+

empty : α = ε
renaming : α ∈ VN
linear : α ∈ Σ∗VNΣ

∗ ∪ Σ∗

operator : α ̸∈ V ∗VNVNV
∗, i.e., at least one terminal is interposed

between any two nonterminals occurring in α
parenthesized : α = LβM where β ∈ V ∗, and L, M are new terminals.

A grammar is called backward deterministic or a BD-grammar (or invertible) if (B →
α,C → α ∈ P ) implies B = C.

If all rules of a grammar are in operator (respectively, linear) form, the grammar is
called an operator grammar or O-grammar (respectively, linear grammar) .

A grammar Gp = (Σ ∪ {L, M}, VN , Pp, S) is a parenthesis grammar (Par-grammar) if the
rhs of every rule is parenthesized. Gp is called the parenthesized version of G, if Pp consists
of all rules A→ LαM such that A→ α is in P .

For brevity, we assume the reader is familiar with the usual definition of derivation

denoted by the symbols ==⇒
G

(immediate derivation),
∗

==⇒
G

(reflexive and transitive closure of

==⇒
G

),
+

==⇒
G

(transitive closure of ==⇒
G

),
m
==⇒
G

(derivation in m steps); the subscript G will be

omitted whenever clear from the context.
We also suppose that the reader is familiar with the notion of syntax tree and that a

parenthesized string is an equivalent way to represent a syntax tree of a CF grammar where
internal nodes are unlabeled. As usual, the frontier of a syntax tree is the ordered left to
right sequence of the leaves of the tree.

The language defined by a grammar starting from a nonterminal A is

LG(A) =

{
w | w ∈ Σ∗, A

∗
==⇒
G

w

}
.

We call w a sentence if A ∈ S. The union of LG(A) for all A ∈ S is the language L(G)
defined by G. The language generated by a Par-grammar is called a parenthesis language,
and its sentences are well-parenthesized strings.

Two grammars defining the same language are equivalent. Two grammars such that
their parenthesized versions are equivalent, are structurally equivalent.
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Notation: In the following, unless otherwise explicitly stated, lowercase letters at the beginning
of the alphabet will denote terminal symbols, lowercase letters at the end of the alphabet
will denote strings of terminals, Greek letters at the beginning of the alphabet will denote
strings in V ∗. Capital letters will be used for nonterminal symbols.

Any grammar can be effectively transformed into an equivalent BD-grammar, and also
into an O-grammar [ABB97, Har78] without renaming rules and without empty rules but
possibly a single rule whose lhs is an axiom not otherwise occurring in any other production.
From now on, w.l.o.g., we exclusively deal with O-grammars without renaming and empty
rules, with the only exception that, if ε is part of the language, there is a unique empty rule
whose lhs is an axiom that does not appear in the rhs of any production.

Definition 2.3 (Backward deterministic reduced grammar [McN67, Sal73]). A context over
an alphabet Σ is a string in Σ∗{−}Σ∗ , where the character ‘−’ /∈ Σ is called a blank. We
denote by α[x] the context α with its blank replaced by the string x. Two nonterminals B
and C of a grammar G are termed equivalent if, for every context α, α[B] is derivable from
an axiom of G iff so is α[C] (not necessarily from the same axiom).

A nonterminal A is useless if there is no context α such that α[A] is derivable from an
axiom or A generates no terminal string. A terminal a is useless if it does not appear in any
sentence of L(G).

A grammar is clean if it has no useless nonterminals and terminals. A grammar is
reduced if it is clean and no two nonterminals are equivalent.

A BDR-grammar is both backward deterministic and reduced.

From [McN67], every parenthesis language is generated by a unique, up to an isomorphism
of its nonterminal alphabet, Par-grammar that is BDR.

2.2.1. Operator precedence grammars. We define the operator precedence grammars (OPGs)
following primarily [MP18].

Intuitively, operator precedence grammars are O-grammars whose parsing is driven by
three precedence relations, called equal, yield and take, included in Σ# × Σ#. They are
defined in such a way that two consecutive terminals of a grammar’s rhs —ignoring possible
nonterminals in between— are in the equal relation, while the two extreme ones —again,
whether or not preceded or followed by a nonterminal— are preceded by a yield and followed
by a take relation, respectively; in this way a complete rhs of a grammar rule is identified
and can be reduced to a corresponding lhs by a typical bottom-up parsing. More precisely,
the three relations are defined as follows. Subsequently we show how they can drive the
bottom-up parsing of sentences.

Definition 2.4 [Flo63]. Let G = (Σ, VN , P, S) be an O-grammar. Let a, b denote elements
in Σ, A,B in VN , C either an element of VN or the empty string ε, and α, β range over V ∗.
The left and right terminal sets of terminals associated to nonterminals are respectively:

LG(A) =
{
a ∈ Σ | ∃C : A

∗
==⇒
G

Caα

}
and RG(A) =

{
a ∈ Σ | ∃C : A

∗
==⇒
G

αaC

}
.

(The grammar name will be omitted unless necessary to prevent confusion.)
The operator precedence relations (OPRs) are defined over Σ# × Σ# as follows:

• equal in precedence: a
.
= b ⇐⇒ ∃A→ αaCbβ ∈ P

• takes precedence: a⋗ b ⇐⇒ ∃A→ αBbβ ∈ P, a ∈ R(B);
a⋗# ⇐⇒ a ∈ R(B), B ∈ S
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GAE : S = {E, T, F}
E → E + T | T ∗ F | e
T → T ∗ F | e
F → e

+ ∗ e #
+ ⋗ ⋖ ⋖ ⋗
∗ ⋗ ⋗ ⋖ ⋗
e ⋗ ⋗ ⋗
# ⋖ ⋖ ⋖

N

# N

N

N

e

+ N

N

e

∗ N

e

+ N

e

#

Figure 1: GAE (left), its OPM (center), and the syntax tree of e+ e ∗ e+ e according to the
OPM (right).

• yields precedence: a⋖ b ⇐⇒ ∃A→ αaBβ ∈ P, b ∈ L(B);
#⋖ b ⇐⇒ b ∈ L(B), B ∈ S.

The OPRs can be collected into a |Σ#| × |Σ#| array, called the operator precedence matrix
of the grammar, OPM(G): for each (ordered) pair (a, b) ∈ Σ# × Σ#, OPMa,b(G) contains
the OP relations holding between a and b.

More formally, consider a square matrix:

M = {Ma,b ⊆ { .=,⋖,⋗} | a, b ∈ Σ#} (2.1)

Such a matrix is called conflict-free iff ∀a, b ∈ Σ#, 0 ≤ |Ma,b| ≤ 1. A conflict-free matrix is
called total iff ∀a, b ∈ Σ#, |Ma,b| = 1. By convention, if M#,# is not empty, M#,# = { .=}.
A matrix is =̇-acyclic if the transitive closure of the =̇ relation over Σ× Σ is irreflexive.

We extend the set inclusion relations and the Boolean operations in the obvious cell
by cell way, to any two matrices having the same terminal alphabet. Two matrices are
compatible iff their union is conflict-free.

Definition 2.5 (Operator precedence grammar). A grammar G is an operator precedence (or
Floyd’s) grammar, for short an OPG, iff the matrix OPM(G) is conflict-free, i.e. the three
OP relations are disjoint. An OPG is =̇-acyclic if OPM(G) is so. An operator precedence
language (OPL) is a language generated by an OPG.

Figure 1 (left) displays an OPG, GAE , which generates simple, unparenthesized arith-
metic expressions and its OPM (center). The left and right terminal sets of GAE ’s non-
terminals E, T and F are, respectively: L(E) = {+, ∗, e}, L(T ) = {∗, e}, L(F ) = {e},
R(E) = {+, ∗, e}, R(T ) = {∗, e}, and R(F ) = {e}.
Remarks. If the relation =̇ is acyclic, then the length of the rhs of any rule of G is bounded
by the length of the longest =̇-chain in OPM(G).

Unlike the arithmetic relations having similar typography, the OP relations do not enjoy
any of the transitive, symmetric, reflexive properties. We kept the original Floyd’s notation
but we urge the reader not to be confused by the similarity of the two notations.

It is known that the family of OPLs is strictly included within the deterministic and
reverse-deterministic CF family, i.e., the languages that can be deterministically parsed both
from left to right and from right to left.

The key feature of OPLs is that a conflict-free OPM M defines a universe of strings
compatible with M and associates to each of them a unique syntax tree whose internal nodes
are unlabeled and whose leaves are elements of Σ, or, equivalently, a unique parenthesization.



Vol. 19:4 APERIODIC = STAR-FREE = FO-DEFINABLE FOR OP LANGUAGES 12:9

We illustrate such a feature through a simple example and refer the reader to previous
literature for a thorough description of OP parsing [GJ08, MP18].

Example 2.6. Consider the OPM(GAE) of Figure 1 and the string e+ e ∗ e+ e. Display all
precedence relations holding between consecutive terminal characters, including the relations
with the delimiters # as shown below:

#⋖ e⋗+⋖ e⋗ ∗⋖ e⋗+⋖ e⋗#

each pair ⋖,⋗ (with no further ⋖,⋗ in between) includes a possible rhs of a production of any
OPG sharing the OPM with GAE , not necessarily a GAE rhs. Thus, as it happens in typical
bottom-up parsing, we replace each string included within the pair ⋖,⋗ with a dummy
nonterminal N ; this is because nonterminals are irrelevant for OPMs. The result is the string
#N +N ∗N +N#. Next, we compute again the precedence relation between consecutive
terminal characters by ignoring nonterminals: the result is #⋖N +⋖N ∗N ⋗+N ⋗#.

This time, there is only one pair ⋖,⋗ including a potential rhs determined by the OPM
(the fact that the external ⋖ and ⋗ “look matched” is coincidental as it can be easily verified
by repeating the previous procedure with the string e+ e ∗ e+ e+ e). Again, we replace
the pattern N ∗N , with the dummy nonterminal N ; notice that there is no doubt about
associating the two N to the ∗ rather than to one of the adjacent + symbols: if we replaced,
say, just the ∗ with an N we would obtain the string N + NNN + N which cannot be
derived by an O-grammar. By recomputing the precedence relations we obtain the string
#⋖N +N ⋗+N ⋗#. Finally, by applying twice the replacing of N +N by N we obtain
#N#. The result of the whole bottom-up reduction procedure is synthetically represented
by the syntax tree of Figure 1 (right) which shows the precedence of the multiplication
operation over the additive one in traditional arithmetics.

Notice that the tree of Figure 1 has been obtained by using exclusively the OPM, not the
grammar GAE although the string e+ e ∗ e+ e ∈ L(GAE)

3. There is an obvious one-to-one
correspondence between the trees whose internal nodes are unlabeled or labeled by a unique
character, and well-parenthesized strings on the enriched alphabet Σ ∪ {L, M}); e.g., the
parenthesized string corresponding to the tree of Figure 1 is LLLeM + LLeM ∗ LeMMM + LeMM.

Obviously, all sentences of L(GAE) can be given a syntax tree by OPM(GAE), but
there are also strings in Σ∗ that can be parsed according to the same OPM but are not in
L(GAE). E.g., the string + ++ is parsed according to the OPM(GAE) as the parenthesis
string LLL+M+M+M. Notice also that, in general, not every string in Σ∗ is assigned a syntax
tree —or parenthesized string— by an OPM; e.g., in the case of OPM(GAE) the parsing
procedure applied to ee is immediately blocked since there is no precedence relation between
e and itself.

The following definition synthesizes the concepts introduced by Example 2.6.

Definition 2.7 (OP-alphabet and Maxlanguage).

• A string in Σ∗ is compatible with an OPM M iff the procedure described in Example 2.6
terminates by producing the pattern #N#. The set of all strings compatible with an
OPM M is called the maxlanguage or the universe of M and is simply denoted as L(M).

3As a side remark, the above procedure that led to the syntax tree of Figure 1 could be easily adapted to
become an algorithm that produces a new syntax tree whose internal nodes are labeled by GAE ’s nonterminals.
Such an algorithm could be made deterministic by transforming GAE into an equivalend BD grammar (sharing
the same OPM). This aspect, however, belongs to the realm of efficient parsing which is not a major concern
in this paper.
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• Let M be a conflict-free OPM over Σ# × Σ#. We use the same identifier M to denote
the —partial— function M : Σ∗ → (Σ ∪ {L, M})∗ that assigns to strings in Σ∗ their unique
well-parentesization as informally illustrated in Example 2.6.

• The pair (Σ,M) where M is a conflict-free OPM over Σ# × Σ#, is called an OP-alphabet.
We introduce the concept of OP-alphabet as a pair to emphasize that it defines a universe
of strings on the alphabet Σ —not necessarily covering the whole Σ∗— and implicitly
assigns them a structure univocally determined by the OPM, or, equivalently, by the
function M .

• Let (Σ,M) be an OP-alphabet. The class of (Σ,M)-compatible OPGs and OPLs are:

GM = {G | G is an OPG and OPM(G) ⊆M}, LM = {L(G) | G ∈ GM}.

Various formal properties of OPGs and OPLs are documented in the literature, chiefly
in [CMM78, CM12, MP18]. In particular, in [CM12] it is proved that Visibly Pushdown
Languages are strictly included in OPLs. In VPLs the input alphabet is partitioned into
three disjoint sets, namely call (Σc), return (Σr), and internals (Σi), where call and return
play the role of open and closed parentheses. Intuitively, the string structure determined by
these alphabets can be represented through an OP matrix in the following way: a⋖ b, for
any a ∈ Σc, b ∈ Σc ∪ Σi; a

.
= b, for any a ∈ Σc, b ∈ Σr; a⋗ b, for all the other cases.

For convenience, we just recall and collect the OPL properties that are relevant for this
article in the next proposition.

Proposition 2.8 (Algebraic properties of OPGs and OPLs).

(1) If an OPM M is total, then the corresponding homonymous function, defined in the
second bullet of Definition 2.7, is total as well, i.e., L(M) = Σ∗.

(2) Let (Σ,M) be an OP-alphabet where M is =̇-acyclic. The class GM contains an OPG,
called the maxgrammar of M , denoted by Gmax,M , which generates the maxlanguage
L(M). For all grammars G ∈ GM , the inclusions L(G) ⊆ L(M) and L(Gp) ⊆
L(Gp,max,M ) = Lp(M) hold, where Gp and Gp,max,M are the parenthesized versions
of G and Gmax,M , and Lp(M) is the parenthesized version of L(M).

(3) The closure properties of the family LM of (Σ,M)-compatible OPLs defined by a total
OPM are the following:
• LM is closed under union, intersection and set-difference, therefore also under com-
plement.

• LM is closed under concatenation.
• if matrix M is =̇-acyclic, LM is closed under Kleene star.

Remark. Thanks to the fact that a conflict-free OPM assigns to each string at most one
parenthesization —and exactly one if the OPM is total— the above closure properties of
OPLs w.r.t. Boolean operations automatically extend to their parenthesized versions4. In
particular, any total, conflict-free, =̇-acyclic OPM defines a universal parenthesized language
LpU such that its image under the homomorphism that erases parentheses is Σ∗ and the
result of applying Boolean operations to the parenthesized versions of some OPLs is the
same as the result of parenthesizing the result of applying the same operations to the
unparenthesized languages.

In the following we will assume that an OPM is =̇-acyclic unless we explicitly point
out the opposite. Such a hypothesis is stated for simplicity despite the fact that, rigorously

4The same does not apply to the case of concatenation.
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# e + e ∗ e + e #

0 1 2 3 4 5 6 7 8

Figure 2: The string e+ e ∗ e+ e, with relation ↷.

speaking, it affects the expressive power of OPLs 5 : it guarantees the closure w.r.t. Kleene
star and therefore the possibility of generating Σ∗; this limitation however, is not necessary
if we define OPLs by means of automata or MSO logic [LMPP15b]; in the case of OPGs a
=̇-cyclic OPM could require rhs of unbounded length; thus, the assumption could be avoided
by adopting OPGs extended by the possibility of including regular expressions in production
rhs [CP20], which however would require a much heavier notation.

2.3. Logic characterization of operator precedence languages. In [LMPP15b] the
traditional monadic second order logic (MSO) characterization of regular languages by Büchi,
Elgot, and Trakhtenbrot [Büc60, Elg61, Tra61] is extended to the case of OPLs. Historically,
a first attempt to extend the MSO logic for regular languages to deal with the typical tree
structure of CF languages was proposed in [LST94] and then resumed by [AM09]. In essence,
the approach consists in adding to the normal syntax of the original logic a new binary
relation symbol, named matching relation, which joins the positions of two characters that
somewhat extend the use of parentheses of [McN67]; e.g., in VPLs the matching relation
pairs a call with a return according to the traditional LIFO policy of pushdown automata.

Such a matching relation, however, is typically one-to-one —with an exception of minor
relevance— but cannot be extended to languages whose structure is not made immediately
visible by explicit parentheses. Thus, in [LMPP15b] we introduced a new binary relation
between string positions which, instead of joining the extreme positions of subtrees of the
syntax trees, joins their contexts, i.e., the positions of the terminal characters immediately
at the left and at the right of every subtree, i.e., respectively, of the character that yields
precedence to the subtree’s leftmost leaf, and of the one over which the subtree’s rightmost
leaf takes precedence. The new relation is denoted by the symbol ↷ and we write x ↷ y to
state that it holds between position x and position y.

Unlike the similar but simpler matching relation adopted in [LST94] and [AM09], the
↷ relation is not one-to-one. For instance, Figure 2 displays the ↷ relation holding for the
sentence e+ e ∗ e+ e generated by grammar GAE : we have 0 ↷ 2, 2 ↷ 4, 4 ↷ 6, 6 ↷ 8,
2 ↷ 6, 0 ↷ 6, and 0 ↷ 8. Such pairs correspond to contexts where a reduce operation is
executed during the left-to-right, bottom-up parsing of the string (they are listed according
to their execution order). By comparing Figure 2 with Figure 1 it is immediate to realize
that every ↷ ”embraces” a subtree of the syntax tree of the string e+ e ∗ e+ e.

Formally, we define a countable infinite set of first-order variables x ,y , . . . and a
countable infinite set of monadic second-order (set) variables X ,Y , . . . . We adopt the
convention to denote first and second-order variables in boldface font.

5An example language that cannot be generated with an
.
=-acyclic OPM is the following: L = {an(bc)n |

n ≥ 0} ∪ {bn(ca)n | n ≥ 0} ∪ {cn(ab)n | n ≥ 0} since it requires the relations a
.
= b, b

.
= c, c

.
= a [CP20].
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Definition 2.9 (Monadic Second-Order Logic for OPLs). Let (Σ,M) be an OP-alphabet, V1

a set of first-order variables, and V2 a set of second-order (or set) variables. The MSO(Σ,M)

(monadic second-order logic over (Σ,M)) is defined by the following syntax (the OP-alphabet
will be omitted unless necessary to prevent confusion):

φ := c(x ) | x ∈ X | x < y | x ↷ y | ¬φ | φ ∨ φ | ∃x .φ | ∃X .φ

where c ∈ Σ#, x ,y ∈ V1, and X ∈ V2.
6

A MSO formula is interpreted over a (Σ,M) string w compatible with M , with respect
to assignments ν1 : V1 → {0, 1, . . . , |w|+ 1} and ν2 : V2 → ℘({0, 1, . . . , |w|+ 1}), in this way:

• #w#,M, ν1, ν2 |= c(x ) iff #w# = w1cw2 and |w1| = ν1(x ).
• #w#,M, ν1, ν2 |= x ∈ X iff ν1(x ) ∈ ν2(X ).
• #w#,M, ν1, ν2 |= x < y iff ν1(x ) < ν1(y).
• #w#,M, ν1, ν2 |= x ↷ y iff #w# = w1aw2bw3, |w1| = ν1(x ), |w1aw2| = ν1(y), and w2

is the frontier of a subtree of the syntax tree of w, i.e., w2 is well parenthesized within
M(w).

• #w#,M, ν1, ν2 |= ¬φ iff #w#,M, ν1, ν2 ̸|= φ.
• #w#,M, ν1, ν2 |= φ1 ∨ φ2 iff #w#,M, ν1, ν2 |= φ1 or #w#,M, ν1, ν2 |= φ2.
• #w#,M, ν1, ν2 |= ∃xφ iff #w#,M, ν ′1, ν2 |= φ, for some ν ′1 with ν ′1(y) = ν1(y) for all
y ∈ V1 − {x}.

• #w#,M, ν1, ν2 |= ∃Xφ iff #w#,M, ν1, ν
′
2 |= φ, for some ν ′2 with ν ′2(Y ) = ν2(Y ) for all

Y ∈ V2 − {X }.
To improve readability, we will drop M , ν1, ν2 and the delimiters # from the notation

whenever there is no risk of ambiguity; furthermore we use some standard abbreviations in
formulas, e.g., ∧, ∀, ⊕ (the exclusive or), x + 1, x − 1, x = y , x ≤ y .

The language of a formula φ without free variables is L(φ) = {w ∈ L(M) | w |= φ}.

Whenever we will deal with logic definition of languages we will implicitly exclude from
such languages the empty string, according with the traditional convention adopted in the
literature7 (see, e.g., [MP71]); thus, when talking about MSO or FO definable languages we
will exclude empty rules from their grammars.

Example 2.10. Consider the OP-alphabet with Σ = {a, b} andM any total OPM containing,
among other precedence relations that are not relevant in this example, a⋖ a, a

.
= b, b⋗ b.

Thus, the universe L(M) is the whole Σ∗. We want to build an MSO formula that defines
the sublanguage consisting of an odd number of a followed by the same number of b. We
build such a formula as the conjunction of several clauses.

The first clause imposes that after a b there are no more a:

∀x (b(x ) ⇒ ¬∃y(x < y ∧ a(y))).
Thus, the original Σ∗ is restricted to the nonempty strings of the language {a∗b∗}. A second
clause imposes that the first character be an a, paired with the last character, which is a b:

a(1) ∧ ∃y(1 ↷ y ∧ b(y) ∧#(y + 1)).

This further restricts the language to {anbn | n > 0} because the relations a ⋖ a
.
= b ⋗ b

imply the reduction of ab, possibly with an N in between. Hence, if the first a and the last

6This is the usual MSO over strings, augmented with the ↷ predicate.
7Such a convention is due to the fact that the semantics of monadic logic formulas is given by referring to

string positions.
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b of the string are the context of such a reduction, the number of a in the string must be
equal to the number of b.

Finally, to impose that the number of a —and therefore of b too— is odd, we introduce
two second-order variables O —which stands for odd— and E —which stands for even—
and impose that i) all positions belong to either one of them, ii) the elements of O and E
storing the a alternate —and therefore those storing the b too—, iii) the position of the first
and last a belongs to O . Such conditions are formalized below8.

∃O∃E∀x

a(x ) ⇒
(x ∈ O ⊕ x ∈ E)∧
(x ∈ O ∧ a(x ) ∧ a(x + 1) ⇒ x + 1 ∈ E)∧
(x ∈ E ∧ a(x ) ∧ a(x + 1) ⇒ x + 1 ∈ O)∧
1 ∈ O ∧ (a(x ) ∧ b(x + 1) ⇒ x ∈ O)


Remark. The reader could verify that the same language can be defined by using a partial
OPM, precisely an OPM consisting exclusively of the relations #⋖a, a⋖a, a .

= b, b⋗b, b⋗#,
and restricting the MSO formula to the above clause referring only to second-order variables.
Using partial OPMs, however, does not increase the expressive power of our logic formalism
—and of the equivalent formalisms OPGs and OPAs—: we will show, in Section 3, that any
“hole” in the OPM can be replaced by suitable (FO) subformulas.

We also anticipate that, as a consequence of our main result, defining languages such as
the one of this example, necessarily requires a second-order formula.

In [LMPP15b] it is proved that the above MSO logic describes exactly the OPL family.
As usual, we denote the restriction of the MSO logic to the first-order as FO.

2.4. The non-counting property for parenthesis and operator precedence lan-
guages. In this section we resume the original definitions and properties of non-counting
(NC) CF languages [CGM78] based on parenthesis grammars [McN67] and show their
relations with the OPL family.

In the following all Par-grammars will be assumed to be BDR, unless the opposite is
explicitly stated.

Definition 2.11 (Non-counting parenthesis language and grammar [CGM78]). A parenthesis
language L is non-counting (NC) or aperiodic iff there exists an integer n > 1 such that, for
all strings x, u, z, v, y in (Σ ∪ {L, M})∗ where z and uzv are well-parenthesized, xunzvny ∈ L
iff xun+mzvn+my ∈ L, ∀m ≥ 0.

A derivation of a Par-grammar is counting iff it has the form A
+

=⇒ umAvm, with m >

1, |uv| > 1, and there is not a derivation A
+

=⇒ uAv.
A Par-grammar is non-counting iff none of its derivations is counting.

Theorem 2.12 (NC language and grammar (Th. 1 of [CGM78])). A parenthesis language
is NC iff its BDR grammar has no counting derivation.

Theorem 2.13 (Decidability of the NC property (Th. 2 of [CGM78])). It is decidable
whether a parenthesis language is NC or not.

8Although it would be possible to use only one second-order variable, we chose this path to make more
apparent the correspondence between the definition of this language through a logic formula and the one
that will be given in Example 2.15 by using an OPG.
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Definition 2.14 (NC OP languages and grammars). For a given OPL L on an OP-alphabet
(Σ,M), its corresponding parenthesized language Lp is the language {M(x) | x ∈ L}. L is
NC iff Lp is NC.

A derivation of an OPG G is counting iff the corresponding derivation of the associated
Par-grammar Gp is counting.

Thus, an OPL is NC iff its BDR OPG (unique up to an isomorphim of nonterminal
alphabets) has no counting derivations.

Example 2.15. Consider the following BDR OPG GC , with S = {O}, O → aEb | ab;E →
aOb. Its parenthesized version generates the language {(La)2n+1(bM)2n+1 | n ≥ 0} which is
counting; thus so is L(GC) which is the same language as that of Example 2.10.

In contrast, the grammar GNC , with S = {A}, A → aBb | ab;B → aAc generates
a NC language, despite the fact that the number of a in L(GNC)’s sentences is odd,
because substrings aa are not paired with repeated substrings.9 Notice however, that, if
we parenthesize the grammar GNoOP , with S = {A}, A → aaAbb | ab which is equivalent
to GC , we obtain a NC language according to Definition 2.11. This should be no surprise,
since GC and GNoOP are not structurally equivalent and GNoOP is not an OPG, having a
non-conflict-free OPM.

The following important corollary immediately derives from Definition 2.14 and Theo-
rem 2.13.

Corollary 2.16 (Decidability of the NC property for OPLs.). It is decidable whether an
OPL is NC or not.

In the following, unless parentheses are explicitly needed, we will refer to unparenthesized
strings rather than to parenthesized ones, thanks to the one-to-one correspondence.

It is also worth recalling [CGM81] the following peculiar property of OPLs: whether
such languages are aperiodic or not does not depend on their OPM; in other words, although
the NC property is defined for structured languages (parenthesis or tree languages [McN67,
Tha67]), in the case of OPLs this property does not depend on the structure given to the
sentences by the OPM. It is important to stress, however, that, despite the above peculiarity
of OPLs, aperiodicity remains a property that makes sense only with reference to the
structured version of languages. Consider, in fact, the following OPLs, with the same OPM
consisting of {c⋖ c, c

.
= a, c

.
= b, a⋗ b, b⋗ a} besides the implicit relations w.r.t. #:

L1 = {c2n(ab)n | n ≥ 1}, L2 = {(ab)+}
They are both clearly NC and so is their concatenation L1·L2 according to Definition 2.14,

which in its parenthesized version is {L2(m−n)(Lc)2n(aMbM)m | m > n ≥ 1}, (see also Theo-
rem 5.3); however, if we applied Definition 2.11 to L1 · L2 without considering parentheses,
we would obtain that, for every n, c2n(ab)2n ∈ L1 · L2 but not so for c2n+1(ab)2n+1.

We mention that the subfamily of OPLs which in [CM78] was proved NC and in
[LMPP15a] was proved FO logic definable, includes, as maximal elements, the maxlanguages
of all OPMs.

9The above definition of NC parenthesized string languages is equivalent to the definition of NC tree
languages [Tho84].
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3. Expressions for operator precedence languages

Next we introduce Operator Precedence Expressions (OPE) as another formalism to define
OPLs, equivalent to OPGs and MSO logic. An OPE uses the same operations on strings and
languages as Kleene’s REs, and just one additional operation, called fence, that selects from
a language the strings that correspond to a well-parenthesized string. In the past, regular
expressions of different kinds have been proposed for string languages more general than the
finite-state ones (e.g. the cap expressions for CF languages [Ynt71]) or for languages made
of structures instead of strings, e.g., the tree languages or the picture languages. Our OPEs
have little in common with any of them and, unlike regular expressions for tree languages
[Tho84], enjoy in the context of OPLs the same properties as regular expressions in the
context of regular languages.

We recall that an OPM M defines a function from unparenthesized strings to their
parenthesized counterparts; such a function is exploited in the following definition. For
convenience, we define the homomorphism (projection) η : Σ# → Σ as: η(a) = a, for a ∈ Σ,
and η(#) = ε.

Definition 3.1 (OPE). Given an OP-alphabet (Σ,M) whose OPM is total, an OPE E and
its language L(E) ⊆ Σ∗ are defined as follows. The meta-alphabet of OPE uses the same
symbols as regular expressions, together with the two symbols ‘[’, and ‘]’. Let E1 and E2 be
OPE:

(1) a ∈ Σ is an OPE with L(a) = a.
(2) ¬E1 is an OPE with L(¬E1) = Σ∗ − L(E1).
(3) a[E1]b, called the fence operation, i.e., we say E1 in the fence a, b, is an OPE with:

if a, b ∈ Σ: L(a[E1]b) = a · {x ∈ L(E1) |M(a · x · b) = La ·M(x) · bM} · b
if a = #, b ∈ Σ: L(#[E1]b) = {x ∈ L(E1) |M(x · b) = LM(x) · bM} · b
if a ∈ Σ, b = #: L(a[E1]#) = a · {x ∈ L(E1) |M(a · x) = La ·M(x)M}
where E1 must not contain #.

(4) E1 ∪ E2 is an OPE with L(E1 ∪ E2) = L(E1) ∪ L(E2).
(5) E1 · E2 is an OPE with L(E1 · E2) = L(E1) · L(E2), where E1 does not contain a[E3]#

and E2 does not contain #[E3]a, for some OPE E3, and a ∈ Σ.
(6) E∗

1 is an OPE defined by E∗
1 :=

⋃∞
n=0E

n
1 , where E

0
1 := {ε}, E1

1 = E1, E
n
1 := En−1

1 · E1;
E+

1 :=
⋃∞
n=1E

n
1 .

Among the operations defining OPEs, concatenation has the maximum precedence;
set-theoretic operations have the usual precedences, the fence operation is dealt with as a
normal parenthesis pair.

Similarly to the case of regular expressions, a star-free (SF) OPE is one that does not
use the ∗ and + operators.

The conditions on # are due to the peculiarities of OPLs closure w.r.t. concatenation
(see also Theorem 5.3). In point 5. the # is not permitted within, say, the left factor E1

because delimiters are necessarily positioned at the two ends of a string.
Besides the usual abbreviations for set operations (e.g., ∩ and −), we will also use the

following derived operators:

• a∆b := a[Σ+]b.
• a∇b := ¬(a∆b) ∩ a · Σ+ · b.

It is trivial to see that the identity a[E]b = a∆b ∩ a · E · b holds.
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a a′ b b′ #
a ⋖ =̇ ⋖
a′ ⋖ ⋗ ⋖ ⋗ ⋗
b ⋖ ⋖ =̇
b′ ⋖ ⋗ ⋖ ⋗ ⋗
# ⋖ ⋖ .

=

a a′ b b′ #
a ⋖ =̇ ⋖ ⋗ ⋗
a′ ⋖ ⋗ ⋖ ⋗ ⋗
b ⋖ ⋗ ⋖ =̇ ⋗
b′ ⋖ ⋗ ⋖ ⋗ ⋗
# ⋖ ⋖ ⋖ ⋖ .

=

Figure 3: The partial OPM defining LDyck (left) and a possible completion Mcomplete (right).

call ret int #
call ⋖ =̇ ⋗
ret ⋗ ⋗ ⋗ ⋗
int ⋗ ⋗ ⋗
# ⋖ ⋖

Figure 4: The partial OPM Mint for the OPE describing an interrupt policy.

The fact that in Definition 3.1 the matrix M is total is without loss of generality: to
obtain the same effect as Ma,b = ∅ for two terminals a and b, (i.e. that there should be a
“hole” in the OPM for them), we can use the short notations

hole(a, b) := ¬(Σ∗(ab ∪ a∆b)Σ∗),

hole(#, b) := ¬(#∆bΣ∗), hole(a,#) := ¬(Σ∗a∆#)

and intersect them with the OPE.
The following examples illustrate the meaning of the fence operation, the expressiveness

of OPLs w.r.t. less powerful classes of CF languages, and how OPEs naturally extend regular
expressions to the OPL family.

Example 3.2. Let Σ be {a, b}, {a ⋖ a, a
.
= b, b ⋗ b} ⊆ M . The OPE a[a∗b∗]b defines the

language {anbn | n ≥ 1}. In fact the fence operation imposes that any string x ∈ a∗b∗

embedded within the context a, b be well-parenthesized according to M .
The OPEs a[a∗b∗]# and a+a[a∗b∗]b ∪ {a+}, instead, both define the language {anbm |

n > m ≥ 0} since the matrixM allows for, e.g., the string aaabb parenthesized as LaLaLabMbMM.
If instead Σ = {a, b, c}, with {a ⋖ a, a

.
= b, a

.
= c, b ⋗ b, b ⋗ c, c ⋗ b} ⊆ M , then both

a[a∗(bc)∗]b and a[(aa)∗(bc)∗]b define the language {a(a2n(bc)n)b | n ≥ 0}.
It is also easy to define Dyck languages with OPEs, as their parenthesis structure

is naturally encoded by the OPM. Consider LDyck the Dyck language with two pairs of
parentheses denoted by a, a′ and b, b′. This language can be described simply through a
partial OPM, shown in Figure 3 (left). In other words it is LDyck = L(Gmax,M ) where M is
the matrix of the figure. Given that, for technical simplicity, we use only total OPMs, we
must refer to the one in Figure 3 (right), and state in the OPE that some OP relations are
not wanted, such as a, b′, where the open and closed parentheses are of the wrong kind, or
a,#, i.e. an open a must have a matching a′.

The following OPE defines LDyck by suitably restricting the “universe” L(Gmax,Mcomplete
):

hole(a, b′) ∩ hole(b, a′) ∩ hole(#, a′) ∩ hole(#, b′) ∩ hole(a,#) ∩ hole(b,#)
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Example 3.3. For a more application-oriented case, consider the classical LIFO policy
managing procedure calls and returns but assume also that interrupts may occur: in such a
case the stack of pending calls is emptied and computation is resumed from scratch.

This policy is already formalized by the partial OPM of Figure 4, with Σ = {call, ret, int}
with the obvious meaning of symbols. For example, the string call call ret call call int
represents a run where only the second call returns, while the other ones are interrupted.
In contrast, call call int ret is forbidden, because a return is not allowed when the stack is
empty.

If we further want to say that there must be at least one procedure terminating regularly,
we can use the OPE: Σ∗ · call∆ret · Σ∗.

Another example is the following, where we state that the run must contain at least one
sub-run where no procedures are interrupted: Σ∗ · hole(call, int) · Σ∗.

Notice that the language defined by the above OPE is not a VPL since VPLs allow for
unmatched returns and calls only at the beginning or at the end of a string, respectively.

Theorem 3.4. For every OPE E on an OP-alphabet (Σ,M), there is an OPG G, whose
OPM is compatible with M , such that L(E) = L(G).

Proof. By induction on E’s structure. The operations ∪,¬, ·, and ∗ come from the closure
properties of OPLs. The only new case is a[E]b, with a, b ∈ Σ#, which is given by the
following grammar.

If, by induction, G defines the same language as E, then, for every axiom SE of G we add
to G the following rules, where S is a new axiom replacing SE , and S, S

′ are nonterminals
not used in G:

• S → η(a)SEη(b), if a
.
= b in M ;

• S → η(a)S′ and S′ → SEη(b), if a⋖ b in M ;
• S → S′η(b) and S′ → η(a)SE , if a⋗ b in M .

Notice that in the first bullet a, b ∈ Σ, while in the second and third bullets a or b could be
#. Let us call this new grammar G′. The grammar for a[E]b is then the one obtained by
applying the construction for intersection between G′ and the maxgrammar for M . This
intersection is to check that a⋖ L(SE) and R(SE)⋗ b; if it is not the case, according to the
semantics of a[E]b, the resulting language is empty.

Next we show that OPEs can express any language that is definable through an MSO
formula as defined in Section 2.3. Thanks to the fact that the same MSO logic can express
exactly OPLs [LMPP15b] and to Theorem 3.4 we will obtain our first main result, i.e., the
equivalence of MSO, OPG, OP automata (see e.g., [MP18]), and OPE.

In order to construct an OPE from a given MSO formula we follow the traditional
path adopted for regular languages (as explained, e.g., in [Pin01]) and augment it to deal
with the new xxxi ↷ xxxj relation. For a MSO formula φ, let xxx1,xxx2, . . . ,xxxr be the set of first
order variables occurring in φ, and XXX1,XXX2, . . . ,XXXs be the set of second order variables.
We use the new alphabet Bp,q = Σ × {0, 1}p × {0, 1}q, where p ≥ r and q ≥ s. The
main idea is that the {0, 1}p part of the alphabet is used to encode the value of the first
order variables (e.g. for p = r = 4, (1, 0, 1, 0) stands for both the positions xxx1 and xxx3),
while the {0, 1}q part of the alphabet is used for the second order variables. Hence, we
are interested in the language Kp,q formed by all strings where the components encoding
the first order variables contain exactly one occurrence of 1. We also use this definition
Ck := {c ∈ Bp,q | the (k + 1)-th component of c = 1}.
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Theorem 3.5. For every MSO formula φ on an OP-alphabet (Σ,M) there is a OPE E on
the same alphabet such that L(E) = L(φ).

Proof. By induction on φ’s structure; the construction is standard for regular operations,
the only difference is xxxi ↷ xxxj .

Following Büchi’s theorem, we use the alphabet Bp,q to encode interpretations of free
variables. The set Kp,q of strings where each component encoding a first-order variable is
such that there exists only one 1 is given by the following regular expression:

Kp,q =
⋂

1≤i≤p
(B∗

p,qCiB
∗
p,q −B∗

pCiB
∗
p,qCiB

∗
p,q).

Disjunction and negation are naturally translated into ∪ and ¬. Like in Büchi’s theorem, the
expression E for ∃xxxiψ (resp. ∃XXXjψ) is obtained from expression Eψ for ψ, on an alphabet
Bp,q, by erasing by projection the component i (resp. j) from the alphabet Bp,q. The order
relation xxxi < xxxj is represented by Kp,q ∩B∗

pCiB
∗
pCjB

∗
p .

Last, the OPE for xxxi ↷ xxxj is B
∗
p,qCi[B

+
p,q]CjB

∗
p,q.

4. Star-free OPEs are equivalent to FO logic

After having completed the characterization of OPLs in terms of OPEs, we now enter the
analysis of the critical subclass of aperiodic OPLs: in this section we show that the languages
defined by star-free OPEs coincide with the FO-definable OPLs; in Section 5 that NC OPLs
are closed w.r.t. Boolean operations and concatenation and therefore SF OPEs define NC
OPLs; in Section 6 we provide a new characterization of OPLs in terms of MSO formulas by
exploiting a control graph associated with a BDR OPG; finally, in Section 7 we show that
such MSO formulas can be made FO when the OPL is NC.

Lemma 4.1 (Flat Normal Form). Any star-free OPE can be written in the following form,
called flat normal form: ⋃

i

⋂
j

ti,j

where the elements ti,j have either the form Li,jai,j∆bi,jRi,j, or Li,jai,j∇bi,jRi,j, or Hi,j,
for ai,j, bi,j ∈ Σ, and Li,j, Ri,j, Hi,j star-free regular expressions.

Proof. The lemma is a consequence of the distributive and De Morgan properties, together
with the following identities, where ◦1, ◦2 ∈ {∆,∇}, and Lk are star-free regular expressions,
1 ≤ k ≤ 3:

a[E]b = a∆b ∩ aEb
L1a1 ◦1 a2L2a3 ◦2 a4L3 = L1a1 ◦1 a2L2a3Σ

+a4L3 ∩ L1a1Σ
+a2L2a3 ◦2 a4L3

¬(L1a1∆a2L2) = L1a1∇a2L2 ∪ ¬(L1a1Σ
+a2L2)

¬(L1a1∇a2L2) = L1a1∆a2L2 ∪ ¬(L1a1Σ
+a2L2)

The first two identities are immediate, while the last two are based on the idea that the only
non-regular constraints of the left-hand negations are respectively a1∇a2 or a1∆a2, that
represent strings that are not in the set only because of their structure.

Theorem 4.2. For every FO formula φ on an OP-alphabet (Σ,M) there is a star-free OPE
E on (Σ,M) such that L(E) = L(φ).
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Proof. Consider the φ formula, and its set of first order variables: like in Section 3, Bp =
Σ× {0, 1}p (the q components are absent, being φ a first order formula), and the set Kp of
strings where each component encoding a variable is such that there exists only one 1.

First, Kp is star-free:

Kp =
⋂

1≤i≤p
(B∗

pCiB
∗
p −B∗

pCiB
∗
pCiB

∗
p).

Disjunction and negation are naturally translated into ∪ and ¬; xxxi < xxxj is covered by
the star-free OPE Kp ∩B∗

pCiB
∗
pCjB

∗
p .

The xxxi ↷ xxxj formula is like in the second order case, i.e. is translated into B∗
pCi[B

+
p ]CjB

∗
p ,

which is star-free.
For the existential quantification, the problem is that star-free (OP and regular) languages

are not closed under projections. Like in the regular case, the idea is to leverage the encoding
of the evaluation of first-order variables, because there is only one position in which the compo-
nent is 1 (see Kp). Hence, we can use the two bijective renamings π0(a, v1, v2, . . . , vp−1, 0) =
(a, v1, v2, . . . , vp−1), and π1(a, v1, v2, . . . , vp−1, 1) = (a, v1, v2, . . . , vp−1), where the last com-
ponent is the one encoding the quantified variable. Notice that the bijective renaming
does not change the Σ component of the symbol, thus maintaining all the OP precedence
relations.

Let Eφ be the star-free OPE on the alphabet Bp for the formula φ, with xxx a free variable
in it. Let us assume w.l.o.g. that the evaluation of xxx is encoded by the last component of
Bp; let B = Σ× {0, 1}p−1 × {0}, and A = Σ× {0, 1}p−1 × {1}.

The OPE for ∃xxxφ is obtained from the OPE for φ through the bijective renaming π,
and considering all the cases in which the symbol from A can occur.

First, let E′ be a OPE in flat normal form, equivalent to Eφ (Lemma 4.1). The FO
semantics is such that L(φ) = L(E′) = L(E′) ∩B∗AB∗.

By construction, E′ is a union of intersections of elements Li,jai,j∆bi,jRi,j , or Li,jai,j∇
bi,jRi,j , or Hi,j , where ai,j , bi,j ∈ Σ, and Li,j , Ri,j , Hi,j are star-free regular languages.

In the intersection between E′ and B∗AB∗, all the possible cases in which the symbol
in A can occur in E′’s terms must be considered: e.g. in Li,jai,j∆bi,jRi,j it could occur
in the Li,j prefix, or in ai,j∆bi,j , or in Ri,j . More precisely, Li,jai,j∆bi,jRi,j ∩ B∗AB∗ =
(Li,j ∩B∗AB∗)ai,j∆bi,jRi,j∪ Li,j(ai,j∆bi,j ∩B∗AB∗) Ri,j ∪Li,jai,j∆ bi,j(Ri,j ∩B∗AB∗) (the
∇ case is analogous, Hi,j is immediate, being regular star-free).

The cases in which the symbol from A occurs in Li,j or Ri,j are easy, because they are
by construction regular star-free languages, hence we can use one of the standard regular
approaches found in the literature (e.g. by using the splitting lemma in [DG08]). The only
differences are in the factors ai,j∆bi,j , or ai,j∇bi,j .

Let us consider the case ai,j∆bi,j ∩ B∗AB∗. The cases ai,j ∈ A or bi,j ∈ A are like
(Li,j ∩B∗AB∗) and (Ri,j ∩B∗AB∗), respectively, because Li,jai,j and bi,jRi,j are also regular
star-free (∇ is analogous).

The remaining cases are ai,j∆bi,j ∩B+AB+ and ai,j∇bi,j ∩B+AB+.
By definition of ∆, ai,j∆bi,j ∩B+AB+ = ai,j [B

∗AB∗]bi,j , and its bijective renaming is
π0(ai,j)[π0(B

∗)π1(A)π0(B
∗)]π0(bi,j) = a′i,j [B

+
p−1]b

′
i,j , where π0(ai,j) = a′i,j , and π0(bi,j) = b′i,j ,

which is a star-free OPE. By definition of ∇, ai,j∇bi,j ∩ B+AB+ = ¬(ai,j [B+
p ]bi,j) ∩

ai,jB
+
p bi,j ∩B+AB+ = ¬(ai,j [B+

p ]bi,j) ∩ ai,jB∗AB∗bi,j .
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Its renaming is ¬(π0(ai,j)[π0(B∗
p)π1(Bp)π0(B

∗
p)]π0(bi,j)) ∩ π0(ai,jB

∗)π1(A) π0(B
∗bi,j) =

¬(a′i,j [B
+
p−1]b

′
i,j) ∩ a′i,jB

+
p−1b

′
i,j , a star-free OPE.

Theorem 4.3. For every star-free OPE E on an OP-alphabet (Σ,M), there is a FO formula
φ on (Σ,M) such that L(E) = L(φ).

Proof. The proof is by induction on E’s structure. Of course, singletons are easily first-order
definable; for negation and union we use ¬ and ∨ as natural.

Like in the case of star-free regular languages, concatenation is less immediate, and it is
based on formula relativization. Consider two FO formulae φ and ψ, and assume w.l.o.g.
that their variables are disjunct, and let xxx be a variable not used in neither of them. To
construct a relativized variant of φ, called φ<xxx, proceed from the outermost quantifier, going
inward, and replace every subformula ∃yyyλ with ∃yyy((yyy < xxx) ∧ λ). Variants φ≥xxx and φ>xxx are
analogous. We also call φ(xxx,yyy) the relativization where quantifications ∃zzzλ are replaced
by ∃zzz((xxx < zzz < yyy) ∧ λ). The language L(φ) · L(ψ) is defined by the following formulas:
∃xxx(φ<xxx ∧ ψ≥xxx) if ε ̸∈ L(ψ); otherwise ∃xxx(φ<xxx ∧ ψ≥xxx) ∨ φ.

The last part we need to consider is the fence operation, i.e. a[E]b. Let φ be a FO formula
such that L(φ) = LM (E), for a star-free OPE E. Let xxx and yyy be two variables unused in φ.
Then the language L(a[E]b) is the one defined by ∃xxx∃yyy(a(xxx) ∧ b(yyy) ∧ xxx↷ yyy ∧ φ(xxx,yyy)).

5. Closure properties of non-counting OPLs and star-free OPEs

Thanks to the fact that an OPM implicitly defines the structure of an OPL, i.e., its
parenthesization, aperiodic OPLs inherit from the general class the same closure properties
w.r.t. the basic algebraic operations. Such closure properties are proved in this subsection
under the same assumption as in the general case (see Proposition 2.8), i.e., that the involved
languages share the same total OPM or have compatible OPMs.

Theorem 5.1. Counting and non-counting parenthesis languages are closed w.r.t. com-
plement. Thus, counting and non-counting OPLs are closed w.r.t. complement w.r.t. the
max-language defined by any OPM.

Proof. We give the proof for counting languages which also implies the closure of non-counting
ones.

By definition of counting parenthesis language and from Theorem 1 of [CGM78], if Lp
is counting there exist strings x, u, v, z, y and integers n,m with n > 1,m > 1 such that
xun+rzvn+ry ∈ L for all r = km > 0 but not for all r > 0. Thus, the complement of Lp
contains infinitely many strings xun+izvn+iy ̸∈ Lp but not all of them since for some i,
i = km. Thus, for ¬Lp too there is no n such that xunzvny ∈ L iff xun+rzvn+ry ∈ L for all
r ≥ 0.

The same holds for the unparenthesized version of Lp if it is an OPL.

Theorem 5.2. Non-counting parenthesis languages and non-counting OPLs are closed w.r.t.
union and therefore w.r.t. intersection.

Proof. Let Lp1, Lp2 be two NC parenthesis languages/OPLs. Assume by contradiction that
Lp = Lp1 ∪ Lp2 be counting. Thus, there exist strings x, u, v, z, y such that for infinitely
many n, xunzvny ∈ Lp but for no n xunzvny ∈ Lp iff xun+rzuvn+ry ∈ Lp for all r ≥ 0.
Hence, the same property must hold for at least one of Lp1 and Lp2 which therefore would
be counting.
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Notice that, unlike the case of complement, counting languages are not closed w.r.t.
union and intersection, whether they are regular or parenthesis or OP languages.

Theorem 5.3. Non-counting OPLs are closed w.r.t. concatenation.

Proof. Recall from [CM12] that OPLs with compatible OPM are closed w.r.t. concatenation.
Thus, let L1, L2 be NC OPLs, and G1 = (Σ, VN1, P1, S1), G2 = (Σ, VN2, P2, S2) their
respective BDR OPGs. Let also Lp1, Lp2, be their respective parenthesized languages
and Gp1, Gp2, their respective parenthesized grammars. We also recall that in general
the parenthesized version Lp of L = L1 · L2 is not the parenthesized concatenation of the
parenthesized versions of L1 and L2, i.e., Lp may differ from LL′

p1 · L′
p2M, where LL′

p1M = Lp1
and LL′

p2M = Lp2, because the OP concatenation may cause the syntax trees of L1 and L2 to
coalesce.

The construction given in [CM12] builds a grammar G whose nonterminal alphabet
includes VN1, VN2 and a set of pairs [A1, A2] with A1 ∈ VN1, A2 ∈ VN2; the axioms of G are
the pairs [X1, X2] with X1 ∈ S1, X2 ∈ S2.

10 In essence (Lemmas 18 through 21 of [CM12])

G’s derivations are such that [X1, X2]
∗

==⇒
G

x[A1, A2]y, [A1, A2]
∗

==⇒
G

w implies w = w1 · w2

for some w1, w2 and X1
∗

==⇒
G1

xA1, A1
∗

==⇒
G1

w1, X2
∗

==⇒
G2

A2y, A2
∗

==⇒
G2

w2. Notice that some

substrings of x · w1, resp. w2 · y, may be derived from nonterminals belonging to VN1, resp.
VN2, as the consequence of rules of type [A1, A2] → α1[B1, B2]β2 with α1 ∈ V ∗

1 , β2 ∈ V ∗
2 ,

where [B1, B2] could be missing; also, any string γ derivable in G contains at most one
nonterminal of type [A1, A2] (see Figure 5).

Suppose, by contradiction, that G has a counting derivation11 [X1, X2]
∗

==⇒
G

x[A1, A2]y
∗

==⇒
G

xum[A1, A2]v
my

∗
==⇒
G

xumzvmy (one of um, vm could be empty) whereas [A1, A2] does not

derive u[A1, A2]v: this would imply the derivations A1
∗

==⇒
G1

umA1, A2
∗

==⇒
G2

A2v
m which

would be counting in G1 and G2 since they would involve the same nonterminals in the
pairs [Ai, Aj ]. Figure 5 shows a counting derivation of G derived by the concatenation of
two counting derivations of G1 and G2; in this case neither um nor vm are empty.

If instead the counting derivation of G were derived from nonterminals belonging to
VN1, (resp. VN2) that derivation would exist identical for G1 (resp. G2).

Thanks to the above closure properties we deduce the following important property of
OPEs.

Theorem 5.4. The OPLs defined through star-free OPEs are NC.

Proof. Thanks to Lemma 4.1 we only need to consider OPEs in flat normal form: they consist
of star-free regular expressions combined through Boolean operations and concatenation
with a∆b and a∇b operators. a∆b = a[Σ+]b is obviously NC; a∇b is the intersection of the
negation of a∆b with the regular star-free expression aΣ+b. Thanks to the above closure
properties of NC OPLs, star-free OPEs are NC.

10This is a minor deviation from the formulation given in [CM12] since in that paper it was assumed that
grammars have only one axiom.

11Note that the G produced by the construction is BD if so are G1 and G2, but it could be not necessarily
BDR; however, if a BDR OPG has a counting derivation, any equivalent BD grammar too has a counting
derivation.
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Figure 5: An example of paired derivations combined by the concatenation construction. In
this case the last character of u is in

.
= relation with the first character of v.

6. From grammar to logic through control graph

In this cornerstone section we show how any OPL can be expressed as a combination of a
“skeleton language” —the max-language associated with the OPM— with a “regular control”.
Such a regular control, defined through a graph derived from the OPG, can be translated in
the traditional way into MSO formulas, which become FO if the language defined by the
graph is non-counting [MP71]. These formulas, suitably complemented by the ↷ relation,
express the language generated by the source OPG.

The following definition of control graph associates a regular language with every
nonterminal symbol of the grammar.

Definition 6.1 (control graph). Let G = (Σ, VN , P, S) be an OPG. The control graph of G,
denoted by C(G) = (Q,Σ, δδδ), is the graph having vertices or states Q and relation δδδ (see
Section 2.1) defined as follows:

• Q = V �
N ∪ V �

N , where V
�
N (resp. V �

N ) = {A� (resp. A�) | A ∈ VN}.
• Let W be the set:

W =

w ∈ Σ+ |
∃A→ βwγ ∈ P,
β ∈ V ∗ · VN or β = ε,
γ ∈ VN · V ∗ or γ = ε

 . (6.1)
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Figure 6: The control graph of GNL

The macro-edges of δδδ are associated with the productions according to the following table,
where w ∈W , α, ζ ∈ V ∗:

rule edge

A→ Bζ A� ε−→−→−→ B�

A→ wBζ A� w−→−→−→ B�

A→ αB B� ε−→−→−→ A�

A→ αBw B� w−→−→−→ A�

A→ αBwCζ B� w−→−→−→ C�

A→ w A� w−→−→−→ A�

For a given control graph, the regular languages consisting in the paths going from state
to state are named control languages ; in particular, for any grammar nonterminal A, we will

denote the set {x | A� x−→−→−→ A�} as RA, where, with no risk of ambiguities, we use the same
arrow to denote a single macro-edge and a whole path of the graph.

The adoption of macro-steps to define a control graph allows us to state an immediate
correspondence between the terminal parts of grammar rules and graph macro-edges, without
introducing useless intermediate steps.

Intuitively, a state of type A� denotes that a path of the control graph visiting the
syntax tree of a string generated by G is touching the nonterminal A while following a
top-down direction; conversely, it visits A� while following a bottom-up direction. We thus
call those states, descending and ascending states respectively.

We will see (Theorem 6.4) that the frontier of a syntax tree rooted in nonterminal A
is a path of the control graph, going from A� to A� (of course, such paths being regular
languages, they also include strings that are not in LG(A)).

Example 6.2. Consider the following OPG GNL, with S = {A,B}.
A→ aBcA | aBcB | ac, B → bAcA | bAcB | bc

Its control graph C(GNL) is given in Figure 6.

6.1. Deriving MSO formulas from the control graph. We already know that the MSO
logic defined in Section 2.3 as an extension of the traditional logic for regular languages
defines exactly the family of OPLs. In this section we show a way to obtain an MSO formula
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Figure 7: An example of the TreeC relation for a rule A → aBbcCdD (with a(x 1), b(x 2),
c(x 3), d(x 4)).

equivalent to an OPG directly from its control graph: the final goal is to obtain from such a
construction an FO formula instead of an MSO one in the case that the OPL is aperiodic.

Intuitively the ↷ relation, which is the only new element w.r.t. the traditional MSO
logic for regular languages, “embraces” the string x generated by some grammar nonterminal

A, thus it must be the case that A� x−→−→−→ A�. Next we provide the details of the MSO
construction.

First, we resume from previous papers about logic characterization of OPL [LMPP15b,
LMPP15a] the following TreeC formula which states that the positions x 1, . . . ,xn, with
n ≥ 1, of a string are, in order, the positions of the terminal characters of a grammar rule
rhs and x 0,xn+1 are the positions of the character immediately at the left and immediately
at the right of the subtree generated by that rule:

TreeC(x 0,x 1, . . . ,xn,xn+1) :=

x 0 ↷ xn+1 ∧
∧

0≤i≤n

 x i + 1 = x i+1

∨
x i ↷ x i+1

∧
∧
i+1<j≤n ¬(x i ↷ x j)

 (6.2)

Figure 7 shows an example of the TreeC relation.
For any nonterminal A, let φA be the MSO formula defining the regular language

RA = {x | A� x−→−→−→ A�}; let φA(x ,y) be its relativization w.r.t. the new free variables x ,y ,
i.e., the formula obtained by replacing every subformula ∃zλ with ∃z ((x < z < y) ∧ λ).

The following key formula ψA states that for every pair of positions x ↷ y , if z is the

string between the two positions, and A� z−→−→−→ A�, then there must exist a rule of G with A
as lhs, and a rhs such that for all of its nonterminals Bj , if any, formula φBj holds.

ψA := ∀x ,y



φA(x ,y) ∧ x ↷ y
⇒

∨
A→B0c1B1c2...cnBn

∃x 1 . . .xn



TreeC(x ,x 1, . . . ,xn,y) ∧∧
1≤i≤n

ci(x i) ∧∧
1≤j≤n−1:
Bj ̸=ε

φBj (x j ,x j+1) ∧

x + 1 ̸= x 1 ⇒ φB0(x ,x 1) ∧
xn + 1 ̸= y ⇒ φBn(xn,y)




(6.3)



Vol. 19:4 APERIODIC = STAR-FREE = FO-DEFINABLE FOR OP LANGUAGES 12:25

where the disjunction is considered over the rules of G and Bj are either ε or are the
nonterminals occurring in the rhs of the production.

Finally, χG states that the strings included between # must be derived by some axiom:

χG :=
∧

A∈VN

ψA ∧ ∃e

(
#(e + 1) ∧ ¬∃y(e + 1 < y) ∧

∨
A∈S

φA(0, e + 1)

)
(6.4)

Example 6.3. Consider again the OPG GNL of Example 6.2.
Let φA and φB be the MSO formulas defining the regular languages RA and RB,

and φA(x ,y) and φB(x ,y) their respective relativized versions. Then the ψA formula for
nonterminal A of GNL is:

∀x ,y



φA(x ,y) ∧ x ↷ y ⇒

∃x 1,x 2

 TreeC(x ,x 1,x 2,y) ∧
a(x 1) ∧ c(x 2) ∧ φB(x 1,x 2) ∧ φA(x 2,y)∧

x + 1 = x 1

∨

∃x 1,x 2

 TreeC(x ,x 1,x 2,y) ∧
a(x 1) ∧ c(x 2) ∧ φB(x 1,x 2) ∧ φB(x 2,y)∧

x + 1 = x 1

∨

∃x 1,x 2

(
TreeC(x ,x 1,x 2,y) ∧

a(x 1) ∧ c(x 2) ∧ x + 1 = x 1 ∧ x 1 + 1 = x 2 ∧ x 2 + 1 = y

)


(6.5)

We purposely avoided some obvious simplifications to emphasize the general structure
of the ψ formula.

Theorem 6.4 (Regular Control). Let G = (Σ, VN , P, S) be a BDR (Σ,M)-compatible OPG,
C(G) its control graph, ψA the formula (6.3) defined above for each A ∈ VN . Then, for any
A ∈ VN , x ∈ L(A) if and only if #x# ⊨ φA(0, |x|+ 1) ∧ ψA.

Proof. First of all, we note that A� x−→−→−→ A� iff #x# ⊨ φA(0, |x|+ 1), i.e. RA = {x | #x# ⊨
φA(0, |x|+ 1)}, by construction of C(G) and of φA.

The proof is by induction on the height m of the syntax trees rooted in A.
Base: m = 1. If A ==⇒

G
x, with x = c1 . . . cn, i.e. A → x is a production of G, then

#x# ⊨ TreeC(0, 1 . . . , n+ 1) and #x# ⊨ ci(i) for every i = 1 . . . n. Also, it is A� x−→−→−→ A�,
by construction of C(G). Hence, #x# ⊨ φA(0, |x|+ 1) ∧ ψA.

Conversely, we have #x# ⊨ φA(0, |x| + 1) ∧ ψA, with x = # ⋖ c1
.
= c2

.
= . . . cn ⋗#.

Therefore: (i) x ∈ RA, (ii) #x# ⊨ 0 ↷ |x|+ 1, and (iii) #x# ⊨ ci(i) for every i = 1 . . . n.
(ii) and (iii) imply that there exists a production B → x, but being G BDR, B must be A.
Hence, x ∈ L(A).
Induction: m > 1. Let us consider any A→ B0c1B1 . . . cnBn ∈ P , ci ∈ Σ, where some Bi
could be absent — we assume for simplicity that they are all present; the case where some
of them are missing can be promptly adapted.

Case A ==⇒
G

B0c1B1 . . . cnBn
∗

==⇒
G

w0c1w1c2w2 . . . cnwn = x implies #x# ⊨ φA(0, |x|+1)∧

ψA. Induction hypothesis: for each i = 0 . . . n, Bi
∗

==⇒
G

wi implies #wi# ⊨ φBi(0, |wi|+ 1) ∧
ψBi .

Let x i be the position of ci in #x# (i.e. #x# ⊨ ci(x i)), i = 1 . . . n. Being A ==⇒
G

B0c1B1 . . . cnBn
∗

==⇒
G

w0c1w1c2w2 . . . cnwn = x, the structure of x is such that # ⋖ w0 ⋗
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c1 ⋖ w1 ⋗ . . . cn ⋖ wn ⋗ #. Hence, #x# ⊨ x i−1 ↷ x i, i = 1 . . . n, and 0 ↷ |x| + 1. By

construction of C(G), A� ε−→−→−→ B�
0 , B

�
i−1

ci−→−→−→ B�
i , i = 1 . . . n, B�

n
ε−→−→−→ A�, so we have A� x−→−→−→ A�.

This means #x# ⊨ φA(0, |x|+ 1), and that the left-hand side of the implication in ψA is
true. By induction hypothesis, #wi# ⊨ φBi(0, |wi|+ 1) implies #x# ⊨ φBi(x i,x i+1); also,
#x# ⊨ φB0(0,x 1) and #x# ⊨ φBn(xn, |x|+ 1). Hence, #x# ⊨ TreeC(0,x 1 . . .xn, |x|+ 1).
Therefore, the right-hand side of the implication of ψA is also true, where the big-∨ is
satisfied with the production A→ B0c1B1 . . . cnBn. Hence, #x# ⊨ φA(0, |x|+ 1) ∧ ψA.
Case #x# ⊨ φA(0, |x|+1)∧ψA implies A ==⇒

G
B0c1B1 . . . cnBn

∗
==⇒
G

w0c1w1c2w2 . . . cnwn =

x. Induction hypothesis: for each i = 0 . . . n, #wi# ⊨ φBi(0, |wi|+1)∧ψBi implies Bi
∗

==⇒
G

wi.

The hypothesis #x# ⊨ φA(0, |x| + 1) ∧ ψA guarantees that for at least one rule of
G, A → B0c1B1c2 . . . cnBn among x’s positions there exist x 1 . . .xn such that #x# ⊨
TreeC(0,x 1 . . .xn, |x|+ 1) and c(x i) = ci | i = 1 . . . n. Thus x = w0c1 . . . cnwn and, by the

induction hypothesis, for each i = 0 . . . n, there exist unique Bi such that Bi
∗

==⇒
G

wi. Since

G is BDR we conclude that A is the unique nonterminal of G such that A
∗

==⇒
G

x.

From Theorem 6.4 we immediately derive the following main

Corollary 6.5. For any BDR (Σ,M)-compatible OPG G, L(G) is the set of strings satisfying
the corresponding formula χG.

In a sense, the above formula ψA “separates” the formalization of the language structure
defined by the OPM from that of the strings generated by the single nonterminals: the former
part —i.e., the ↷ relation and the TreeC subformula— are first-order. It is well-known
from the classic literature [MP71] that NC regular languages can be defined by means of FO
formulas. Thus, subformulas φA of (6.5), can be made FO if the regular control languages
RA are NC. Thus, we obtain a first important result:

Corollary 6.6. If the control graph of an OPG G defines languages RA, A denoting any
nonterminal character of G, that are all NC, then, L(G) can be defined through an FO
formula.

The following example, besides illustrating the application of Theorem 6.4 and its
corollaries, presents an OPL version of a tree language that has been shown to be not
definable through the FO restriction of the MSO logic for tree languages [Pot94]. In contrast,
formula (6.4) gives an FO-definition for the OPL version.

Example 6.7. The OPG GLogic, with terminal alphabet ΣLM = {L, M,∧,∨, 0, 1} presented in
Figure 8, defines the language of fully parenthesized logical sentences making use of the ∧
and ∨ operators only, that evaluate to true.

Clearly the parenthesized sentences generated by the two nonterminals of GLogic
12 are

isomorphic to their STs (once the internal nodes are anonymized) and to the trees of the
tree language defined on the alphabet Σ = {∧,∨, 0, 1} partitioned into Σ0 = {0, 1} and
Σ2 = {∧,∨} where the indexes of the two subsets denote their arity. Furthermore, the
sentences generated by the axiom T are isomorphic to the set of trees that evaluate to 1.

To give an intuition why this language is not FO definable using tree languages, we can
refer to [Heu91], where it is proved that “a tree language is first-order definable if and only

12Strictly speaking GLogic is not a parenthesis grammar since we omitted useless parentheses for the rhs 1
and 0.



Vol. 19:4 APERIODIC = STAR-FREE = FO-DEFINABLE FOR OP LANGUAGES 12:27

S = {T}
T → LF ∨ T M | LT ∨ F M | LT ∨ T M | LT ∧ T M | 1
F → LT ∧ F M | LF ∧ T M | LF ∧ F M | LF ∨ F M | 0

∨ ∧ L M 1 0 #
∨ ⋖ .

= ⋖ ⋖
∧ ⋖ .

= ⋖ ⋖
L .

=
.
= ⋖ ⋖ ⋖

M ⋗ ⋗ ⋗ ⋗
1 ⋗ ⋗ ⋗ ⋗
0 ⋗ ⋗ ⋗ ⋗
# ⋖ ⋖ ⋖ .

=

Figure 8: GLogic (left) and its OPM (right).

T

L T

1

∧ T

L F

0

∨ T

1

M

M

∧

1 ∨

0 1

# L 1 ∧ L 0 ∨ 1 M M #

0 1 2 3 4 5 6 7 8 9 10

Figure 9: The ST of the GLogic’s sentence L1 ∧ L0 ∨ 1MM (left), the corresponding tree of the
tree language (center), and the ↷ relation for the string L1 ∧ L0 ∨ 1MM (right).

if it is built up from finite set of special trees using the operations union, complement and
concatenation, all restricted to the class of special trees.” Special trees are trees which can
be labeled at the frontier with a single occurrence of a special symbol (not in Σ) used for
concatenation: two trees are concatenated by appending the second one to the first one in
place of this special symbol. Intuitively, this kind of concatenation allows for a structure
which is analogous to linear CF grammars, while GLogic is clearly not linear.

Figure 9 (left) displays the —only— ST that the grammar associates to the string
L1∧L0∨1MM, the corresponding tree in the tree language (center), and (right) the corresponding
↷ relation which illustrates the meaning of the TreeC formula. Figure 10 displays the
control graph of the grammar.

Figure 10: The control graph of GLogic.
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By following the left-to-right, bottom-up parsing of the string, we see that 1↷3 with L(1)
and ∧(3); the 1 included in between belongs to RT , since there exists one —only— rule with
1 as rhs, i.e., T → 1, 1 ∈ L(T ). The following parsing step leads to the relation 4↷6 with L(4)
and ∨(6); the 0 included in between belongs to RF ; since there exists one only rule F → 0,
0 ∈ L(F ). After a similar operation for positions 6 through 8, we have the string L0∨1M ∈ RT
included within positions 3 and 9 for which relation ↷ holds; TreeC(3, 4, 6, 8, 9) holds too.
There exists a rule T → LF ∨ T M. By induction 0 ∈ L(F ), 1 ∈ L(T ); thus L0 ∨ 1M ∈ L(T ).
Completing the traversal of the syntax tree should now be a simple exercise leading to verify
that formula ψT holds for the string L1 ∧ L0 ∨ 1MM. Furthermore, by formula (6.4), χGLogic

is
satisfied, since T is the only axiom of GLogic. A natural generalization leads to verify that a
string in {L, M,∧,∨, 0, 1}∗ belongs to L(GLogic) iff it satisfies χGLogic

. The languages of the
control graph are clearly NC, so that they can be defined through FO formulas φT , φF ;
the remaining part of ψ is based on TreeC, which is FO. Thus, we have obtained an FO
definition of L(GLogic).

Corollary 6.6 and Example 6.7 also hint at a much more attractive result: if a NC
OPL is associated with NC control languages, then it can be defined through an FO formula.
Unfortunately, we will soon see that there are NC OPLs such that the control graph of their
(unique up to a nonterminal isomophism) BDR OPG defines counting regular languages RA.
Thus, the following —rather technical— section is devoted to transform the original BDR
grammar of a NC OPL and its control graph into equivalent ones where the controlling
regular languages involved in the above formulas are NC and therefore FO definable.

7. NC regular languages to control NC OPLs

The previous section showed that, if an OPL is controlled by a control graph whose path
labels from descending to corresponding ascending states are NC regular languages, then
the OPL can be defined through an FO formula; by adding the intuition that, if languages
RA, where A denotes any nonterminal of the original grammar, are NC, then the original
OPL is NC as well, we would obtain a sufficient condition for FO-expressibility of NC OPLs.

This is not our goal, however: we want to show that any NC OPL can be expressed by
means of an FO formula. Unfortunately, it is immediate to realize that there are NC OPLs
whose languages RA of the control graph of their BDR grammar are counting, as shown by
the following simple example:

Example 7.1. Consider the grammar A→ aBc | d; B → aAb. The regular control language
RA is (aa)∗d(bc)∗. However, Theorem 6.4 still holds if we replace RA by the NC language
a∗d(bc)∗: intuitively, it is the OPM, and therefore the ↷ relation, which imposes that each
b and each c are paired with a single a, so that for each sequence belonging to (bc)∗ we
implicitly count an even number of a.

Generalizing this natural intuition into a rigorous replacement of the original control
graph of any OPG with a different NC one which preserves Theorem 6.4 is the target of this
section. To achieve it, we need a rather articulated path which is outlined below:

(1) First, in the same way as in [CGM78] we build a linear grammar GL associated with
the original OPG G (which is always assumed to be BDR) such that L(GL) is NC iff
L(G) is as well.
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(2) Then, we derive from the control graph of GL another control graph C(GL) whose regular
languages are NC. This will require a rather sophisticated transformation of the original
C(GL).

(3) The original grammar G is transformed into an equivalent one G′, which is no longer
BDR, whose nonterminals are pairs of states of the transformed control graph C(GL)
where one or more of them are homomorphically mapped into single nonterminals A of
G, and such that its control graph C(G′) exhibits only NC control languages.

(4) Finally, the original Theorem 6.4 is extended to the case of the transformed grammar G′

and its new control graph. At this point, the MSO formalization of any OPL provided
in Section 6.1 automatically becomes an FO one thanks to the fact that each subformula
φA defines a NC regular language.

To obtain a first intuition of the final goal of the process outlined below consider the
following grammar: (AB�, A�) → a(AB�, B�)c | d; (AB�, B�) → a(AB�, A�)b.

Apparently it is identical to the original grammar of Example 7.1 up to a simple renaming
of its nonterminals. However, if we rebuild its control graph by using {AB�} as V �

N and

{A�, B�} as V �
N we obtain that R(AB�,A�) is a

∗d(bc)∗, and R(AB�,B�) is a
+db(cb)∗ which are

both NC.

7.1. Linearized OPG and its control graph.

Definition 7.2 (Bilateral linear grammar). A linear production of the form A→ uBv such
that B ∈ VN , and u, v ∈ Σ+ is called bilateral. A linear grammar is bilateral if it contains
only bilateral productions and terminal productions.

Thus, a bilateral grammar may not contain productions that are null, renaming, left-
linear or right-linear.

The following definition slightly modifies a similar one given in [CGM78].

Definition 7.3 (Linearized grammar). Let G = (Σ, VN , P, S) be a BDR OPG. Its associated
linearized grammar GL is (ΣL, VN , PL, S), where ΣL = Σ∪Σ∪ {εL, εR}, Σ = {C | C ∈ VN},
h is the homomorphism defined by h(a) = a, h(C) = C, and

PL =

{A→ h(α)Bh(β) | A→ αBβ ∈ P, α, β ̸= ε} ∪
{A→ εLBh(β) | A→ Bβ ∈ P} ∪
{A→ h(α)BεR | A→ αB ∈ P} ∪
{A→ w | A→ w ∈ P,w ∈ Σ+}.

Example 7.4. Consider the grammar GNL of Example 6.2. Its associated linearized
grammar GLNL, with ΣL = {a, b, c, A,B, εR},13 and the same axioms as GNL, has the
following productions:

A→ aBcAεR | aBcA | aBcBεR | aBcB | ac,
B → bAcAεR | bAcA | bAcBεR | bAcB | bc
Thus, the set W of GLNL’s control graph is {a, b, c, bAc, aBc, cA, cB, ac, bc, εR}
A linearized grammar is evidently bilateral and BDR (after some obvious clean-up).

It has a different terminal alphabet —and therefore OPM— than the original grammar
from which it is derived but it is still an OPG since its new OPM is clearly conflict-free
(the two separate “dummy ε” have been introduced just to avoid the risk of conflicts). It is
not guaranteed, however, that an OPG with =̇-acyclic OPM has an associated linearized

13εL is useless in this case.
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grammar enjoying the same property. Such a hypothesis, however, is not necessary to ensure
the following results (indeed, it is only necessary to guarantee the existence of a maxgrammar
generating the universal language Σ∗).

The following lemma is a trivial adaptation of the analogous Lemma 1 of [CGM78] to
Definition 7.3.

Lemma 7.5. Let G be a BDR OPG and GL its associated linearized grammar. L(GL) is
NC iff L(G) is as well.

This simple but fundamental lemma formalizes the fact that the aperiodicity property
can be checked by looking only at the paths traversing the syntax trees from the root to the
leaves neglecting their ramifications.

The next definition and property are taken from [CDP07] with a minor adaptation14.

Definition 7.6 (Counter). For a given FA (without ε-moves) a counter is a pair (X,u),
where X is a sequence of different states q1q2 . . . qk, with k > 1 and u is a nonempty string

such that for 1 ≤ i ≤ k, qi
u−→−→−→
δ
q(i+1) mod k; k is called the order of the counter. For a counter

C = (X,u), the sequence X is called the counter sequence of C and u the string of C.

Proposition 7.7. If an FA A is counter-free, i.e., has no counters, then L(A) is non-
counting.

Notice that the converse of this statement only holds in the case of minimized determin-
istic FAs [MP71].

Thus, for a linearized grammar GL, every path of its control graph belonging to some
RA is articulated into a sequence of macro-steps whose states belong to V �

N followed by a

sequence which traverses the corresponding nodes of V �
N in the reverse order —in between

there is a single macro-step from some B� to B�—. Accordingly, a counter sequence may
only contain nodes that either all belong to V �

N , or all belong to V �
N ; thus, their corresponding

counters will be said descending or ascending.

Let C = (X,u) be a counter with X = A1A2 . . . Ak, Ai
u−→−→−→ A(i+1) mod k, for 1 ≤ i ≤ k.

Let also u = z1z2 . . . zj , j ≥ 1 be the factorization into strings zi of the set W corresponding

to the macro-steps of the path Ai
u−→−→−→ A(i+1) mod k: notice that such a factorization is the

same for all i since the OPM imposes the same parenthesization of u in any path.
The following lemma allows us to reason about the NC property of linear OPLs without

considering explicitly the parenthesis versions of their grammars.

Lemma 7.8. Let GL be a bilateral linear OPG, C(GL) its control graph, GLp the parenthesized

version of GL, and C(GLp ) its control graph. Then, for any nonterminal A of GL the control
language RpA is NC iff so is RA.

Proof. If RpA is counting, then obviously so is RA.

Vice versa, suppose by contradiction that for all k RA contains a string xykz but not
xyk+mz for all m ≥ 0. Notice that for k sufficiently large the parenthesized version ykp of yk

must contain either only open or only closed parentheses.

14The adaptation consists in allowing for the use of macro-steps reading a nonempty sequence of characters
rather than one single character per transition as in the traditional definition of FA adopted in [CDP07]. It
is immediate to verify that Proposition 7.7 holds identically whether we consider FAs defined in terms of
macro-steps or the traditional ones.
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Let us assume w.l.o.g. that ykp begins with an open (resp. ends with a closed) parenthesis;
otherwise consider a suitable permutation thereof. If all occurrences of yp itself begin with
an open parenthesis (resp. end with a closed one), then RpA is counting too; otherwise for
some r with 1 < r ≤ k there must exist an up = yrp without a parenthesis between two
consecutive occurrences of yp; but this would imply a conflict in the OPM.

Definition 7.9 (Counter table). We use an array with the following scheme, called a counter
table T , to completely represent, in an orderly fashion, the macro-transitions which may
occur within a counter C = (X = T1T2 . . . Tk, u = z1z2 . . . zj):

T 0
1

z1−→−→−→ T 1
1

z2−→−→−→ T 2
1 . . . T j−1

1

zj−→−→−→ T 0
2

T 0
2

z1−→−→−→ T 1
2

z2−→−→−→ T 2
2 . . . T j−1

2

zj−→−→−→ T 0
3

· · ·

T 0
k

z1−→−→−→ T 1
k

z2−→−→−→ T 2
k . . . T j−1

k

zj−→−→−→ T 0
1

(7.1)

where the 0-th column is conventionally bound to the above counter C.
With reference to the above Table (7.1) the sequence of macro-steps looping from T 0

1 to
T 0
1 is called the path of the counter table.

Thus, a counter table defines a “matrix of counters” consisting of its columns: in the
case of Table (7.1) the first column T 0

1 , T
0
2 , . . . , T

0
k together with the string u will be used as

the reference counter of the table. Each cyclic permutation of each column is another counter
with the same string, whereas each column is the counter sequence of another counter whose
string is a cyclic permutation of u, e.g. (T 1

2 T
1
3 . . . T

1
1 , z2z3 . . . zjz1). For any counter of a

counter table, its associated path is the sequence of macro-steps looping from its first state
to itself. The above remarks lead to the following formal definition:

Definition 7.10. Let T be a counter table expressed in the form of Table (7.1); the
conventionally designated counter C = (T 0

1 T
0
2 . . . T

0
k , z1z2 . . . zj) is named its reference

counter ; all columns (Tm1 T
m
2 . . . Tmk , z(m mod j)+1z((m+1) mod j)+1 . . . z((m+j−1) mod j)+1) with

m = 1, 2 . . . j − 1 are named horizontal cyclic permutations of the reference counter; all
counters (T 0

l T
0
(l mod k)+1 . . . T

0
l−1, z1z2 . . . zj), with 1 < l ≤ k, are named vertical cyclic

permutations of the reference counter; horizontal-vertical and vertical-horizontal cyclic
permutations, are the natural combination of the two permutations.

If we apply cyclic permutations to the whole path producing a counter C = (X =
T1T2 . . . Tk, u = z1z2 . . . zj), and therefore a complete counter table, we obtain a family
of counter tables associated with the original Table 7.1. We decide, therefore, to choose
arbitrarily an “entry point” of any path producing a counter. Such an entry point uniquely
determines a counter table T and therefore a unique reference counter. Furthermore,

for convenience, if the same path Tl
u−→−→−→ T(l+1) mod k, for 1 ≤ l ≤ k can also be read as

Tl
u′−→−→−→ T(l+1) mod k′ , with u = u′r, k′ = k · r we represent the unique associated T by

choosing the minimum of such u (and the maximum of the k). All elements of the table
—states, transitions, counter sequences— will be referred through this unique T , ignoring the
other tables of its “family”. Whenever needed, we will identify a counter table, its counter
sequences, and any element thereof, through a unique index, as T [i], X[i], Tl[i], respectively.

Notice that a counter table uniquely defines a collection of counters (among them the
first column being chosen as its reference counter), but the same counter may be a counter,
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whether a reference counter or not, of different tables. This case arises, for instance, when
the linearized grammar contains two productions such as A1 → z1B

1
1v and A1 → z1C

1
1w.

Then the same counter C = (X = A1A2 . . . Ak, u = z1z2 . . . zj) may occur in two different
counter tables that necessarily differ in at least one of the intermediate states Bi

h.
Notice also that the various counters of a counter table are not necessarily disjoint.

Consider, for instance, the following sequence of transitions

A
a−→−→−→ B, B

b−→−→−→ C, C
c−→−→−→ B, B

a−→−→−→ D, D
b−→−→−→ E, E

c−→−→−→ A
which constitute a counter table. In this counter table nonterminal B occurs twice by
using two different transitions; thus, we obtain the counters (AB, abc), (BD, bca), (CE, cab).

Furthermore, the same transition B
b−→−→−→ C, can also be used to exit the counter table, after

having executed the loop B
b−→−→−→ C, C

c−→−→−→ B, instead of continuing the counter table with

B
a−→−→−→ D.

Definition 7.11 (Paired Paths). Let C(GL) be the control graph of a linearized grammar
GL. Let A1 =⇒ u1A2v1 . . . =⇒ u1 . . . un−1Anvn−1 . . . v1 with u = u1u2 . . . un−1, v =

vn−1 . . . v1 be a derivation for GL. Then the paths A�
1

u1−→−→−→ A�
2, . . . A

�
n−1

un−1−→−→−→ A�
n, and

A�
n

vn−1−→−→−→ A�
n−1, . . . A

�
2

v1−→−→−→ A�
1, called, respectively, descending and ascending, are paired (by

such a derivation).
Two counter tables are paired iff their paths, or cyclic permutations thereof, are paired;

two counters are paired iff their associated paths T �
1

uk−→−→−→ T �
1 , T

�
1

vh−→−→−→ T �
1 are paired —

therefore so are the counter tables they belong to.

Notice that there could also be partially overlapping counter tables and counters, which
share one or more productions of GL but are not fully paired.

7.2. Transforming GL control graph. If the control graph of a linearized grammar GL

is counter free, then L(GL) is NC. Notice, in fact, that

(1) C(GL) has no ε-moves, thus the Definition 7.6 of counter-free is well-posed for it;
(2) If, by contradiction, GL, which is BDR, admitted a counting derivation, such a derivation

would imply two paired counters of C(GL).
Unfortunately such a condition is only sufficient but not necessary to guarantee that

L(GL) is NC, as shown by Example 7.1. Thus, according to the path outlined at the
beginning of Section 7, our next goal is to transform C(GL) into a control graph, denoted
as C(GL), whose regular languages are NC and which will drive the construction of a
grammar G′, equivalent to the original G, such that its control graph defines NC RA for its
nonterminals. The construction of C(GL) will exploit the following lemmas, which make use
of the notion of paired counters:

Lemma 7.12. If GL is NC, then C(GL) either has no paired counters or, for any two paired
counters, the orders of the descending and ascending counter are coprime numbers.

Proof. Assume, by contradiction, that the counters C�
1 = (X�, u), C�

2 = (Y �, v) are paired

by the derivation A1
∗

=⇒ ukA1v
h and that for some j, r, s > 1, k = j · r, h = j · s.

Let X� = A�
1 . . . A

�
k, Y

� = A�
1 . . . A

�
h. This means that for some j, A1

∗
=⇒ ujAjv

j ∗
=⇒

u2jA2jv
2j . . .

∗
=⇒ ukA1v

h; thus (A�
1A

�
jA

�
2j . . . A

�
k, u

j) and (A�
1A

�
jA

�
2j . . . A

�
1, v

j), where A�
j and
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A�
(r−1)j , A

�
2j and A

�
(r−2)j . . . refer to the same nonterminal in the derivation A1

∗
=⇒ ukA1v

h,

are two paired counters as well which correspond to a counting derivation of GL.

Example 7.13. The productions A→ aBb and B → aAb generate the two paired counters
of order 2 of the control graph: (A�B�, a) paired with (B�A�, b). Instead, the productions
A1 → aA2f , A2 → bA3g, A3 → aA4h, A4 → bA5f , A5 → aA6g, A6 → bA1h generate the
following sequence of descending counters of order 3 paired with ascending counters of
order 2:

(A�
1A

�
3A

�
5, ab), (A

�
1A

�
4, hgf)

(A�
2A

�
4A

�
6, ba), (A

�
2A

�
5, fhg)

(A�
3A

�
5A

�
1, ab), (A

�
3A

�
6, gfh)

(A�
4A

�
6A

�
2, ba), (A

�
4A

�
1, hgf)

(A�
5A

�
1A

�
3, ab), (A

�
5A

�
2, fhg)

(A�
6A

�
2A

�
4, ba), (A

�
6A

�
3, gfh)

By looking at the second case of Example 7.13 we notice that for each couple of paired
counter sequences there is just one nonterminal that belongs to both of them. This remark
is easily generalized to the following lemma:

Lemma 7.14. Let L(GL) be NC. If in C(GL) there are two paired counters C�
1 = (X�, u),

C�
2 = (Y �, v) there exists only one A such that A� ∈ X�, A� ∈ Y �.

Proof. Let |X�| = k, and |Y �| = h, with h and k coprime, thanks to Lemma 7.12. The two

paired counters correspond to a NC derivation of GL A1
∗

=⇒ xAty
∗

=⇒ ukA1v
h. The total

length of the derivation is h · k and each At belongs to a set, marked �, of cardinality k in
the table T [i] of C�

1 and to a set, marked �, of cardinality h in the table T [f ] of C�
2 . Thus,

for any couple (X�, Y �) paired by the two counter tables, there exists exactly one A, such
that A� ∈ X�, A� ∈ Y � by virtue of the Chinese remainder theorem.

On the basis of the above lemmas the construction of C(GL) aims at replacing any

ascending and descending counter with a loop X
u−→−→−→
δδδ

X where X is a suitable new state

in C(GL) representing a whole counter sequence of C(GL); thanks to Lemma 7.12, the new
loop will be paired with a path that is not a counter or with another loop which in turn
replaces a counter whose order is coprime w.r.t. the order of the former one. By virtue of
Lemma 7.14, in turn, this will allow to disambiguate which element of the counter sequence
corresponds to the GL’s nonterminal deriving the various instances of string u.

This basic idea, however, cannot be implemented in a trivial way such as replacing all
states belonging to a counter sequence by a single state representing the whole sequence.
Consider, for instance, a grammar containing the following productions:

A→ aBc | h
B → aAd | bCd
C → bAd

which produce the control graph depicted in Figure 11.
The control graph has a descending counter (A�B�, a) paired with the ascending path

A� d−→−→−→ B� c−→−→−→ A�. If we simply replace the descending path A� a−→−→−→ B� a−→−→−→ A� with a

self-loop AB� a−→−→−→ AB� by coalescing the two states into one state denoted by AB�, we

obtain as a side effect a new counter (AB�C�, b); if we further collapse AB�C� into ABC� we
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Figure 11: A control graph including a descending counter.

reduce the descending part of the control graph to a single state with two self-loops labeled
a, b: at this point, once a path reaches the state A� and reads the symbol d it is impossible
to decide whether such an “ascending d” should be paired with a previous descending b or a
since both are labeling a self-loop on the unique state ABC�.

The construction we devised for such a C(GL) is therefore more complex: it is articulated

into two steps: first a Ĉ(GL) “equivalent” to C(GL), in a sense that will be made precise in

Lemma 7.16, is built. Ĉ(GL) splits some states belonging to counters in such a way that
each new instance thereof belongs to exactly one counter table; then the further construction
C(GL) collapses all counter sequences into single states that allow repeating the “basic
counter string u” any number of times, instead of k times. Thus, each path of the original

control graph C(GL) of type, say A� uk−→−→−→ A� that realizes a counter (X�, u) of order k will

be replaced by k paths X� u−→−→−→ X� (apart from a transient that will be explained later).
Thanks to Lemma 7.12, if GL is NC, it will not be paired with another counter (Y �, v), or,
if so happens, the order of the other counter will be an h coprime of k; thus, thanks to
Lemma 7.14, it will be possible to associate each couple of paired counters of the control
graph of GL with a unique derivation of the grammar.

Construction of Ĉ(GL). Intuitively, the aim of Ĉ(GL) is to produce “non-intersecting
counter tables”, i.e., counter tables such that T [i] ̸= T [j] implies that the counter sequences
of T [i] are all disjoint from those of T [j]. This is obtained by creating one instance of state
A, say A[i], for each counter table T [i] A belongs to, where the index i binds the state
instance to the table.

The construction below applies as well to states of type A� and to states of type A�,

according to Definition 6.1. Notice that macro-transitions of the type A� z−→−→−→ A�, which
correspond to GL’s productions A→ z, z ∈W , cannot belong to any counter table of C(GL),
but A� and/or A� can belong to some descending or ascending counter, respectively.

The construction of Ĉ(GL) = (Q̂,Σ, δ̂δδ) starts from C(GL) = (Q,Σ, δδδ), i.e., it is a process

where Q̂ and δ̂δδ are initialized as Q and δδδ, and modifies them in the following way. When the
transformations below apply identically to descending and ascending paths we omit labeling
the states of the control graph as � or �:

First, we label all counter tables T with unique and different indexes i.
Then, all states belonging to T [i] are also labeled in the same way, so that if a state A

belongs to different counter tables, T [i] and T [h], i ̸= h, it will be split into different states
A[i] and A[h]; if instead it belongs to just one counter with only one associated table, for
convenience it will be labeled with the same index i identifying the table. If it does not
belong to any counter table, it remains unlabeled.
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Then, Ĉ(GL)’s transitions are defined as follows:

• For every macro-transition A
f−→−→−→
δδδ

B where A and B are both descending or both ascending,

for all m copies A[1], A[2], . . . A[m] of A and n copies B[1], B[2], . . . B[n] of B, A
f−→−→−→
δδδ

B

is replaced by m · n macro-transitions A[i]
f−→−→−→̂
δδδ

B[h], where A[i] and/or B[h] remain A

and/or B if they do not belong to any counter table.

• For every transition A� f−→−→−→
δδδ

A�, if A belongs to some descending and/or ascending counter

—thus it is labeled A�[i] and/or A�[h]— all possible A�[i]
f−→−→−→̂
δδδ

A�[h] replace the original

macro-transition.

Example 7.15. Consider the fragment of a control graph C(GL) (which could be indifferently
a descending or an ascending part thereof) depicted in Figure 12 (left). The corresponding

fragment of Ĉ(GL) is given in Figure 12 (right).
The example shows the case of two counter tables sharing some states. Notice that in

general the construction of Ĉ(GL) increases the number of counters which are all isomorphic

to the original one: for instance, in the case of Figure 12, instead of the path A
a−→−→−→

H
b−→−→−→ L

a−→−→−→ B
b−→−→−→ A, we have A[1]

a−→−→−→ H[1]
b−→−→−→ L[1]

a−→−→−→ B[1]
b−→−→−→ A[1], but also

A[1]
a−→−→−→ H[2]

b−→−→−→ L[1]
a−→−→−→ B[1]

b−→−→−→ A[1], A[1]
a−→−→−→ H[1]

b−→−→−→ L[2]
a−→−→−→ B[1]

b−→−→−→ A[1] . . . .
We will see, however, that, despite the increased number of paths, none of them will generate
a counting path after the further transformation from Ĉ(GL) to C(GL).

Figure 12: C(GL) (left) and Ĉ(GL) (right); states belonging to different counter tables are
depicted in different colors.

Lemma 7.16. For each pair (A�, A�) of C(GL), and z ∈ Σ+, A� z−→−→−→
δδδ

A� iff, either A� z−→−→−→
δ̂̂δ̂δ

A�

or, for all A�[i], A�[l], A� z−→−→−→
δ̂̂δ̂δ

A�[l] or A�[i]
z−→−→−→
δ̂̂δ̂δ

A� or A�[i]
z−→−→−→
δ̂̂δ̂δ

A�[l]. By projecting the
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counters of Ĉ(GL) through the homomorphism h(A[i]) = A, h(B) = B for all B that do not
belong to any counter, one obtains exactly the counter tables and the counters of C(GL).

Proof. Paths of C(GL) that do not touch any state belonging to some counter table are

found identically in Ĉ(GL). If the path of a counter table T [i] of C(GL) touches a sequence

of states H,K, . . . L, Ĉ(GL) also has the path obtained by replacing H by H[i], K by K[i],
etc., i being the index of T [i]. It is also always possible to “jump” from a table T [i] to
another table T [l] by using the transition target B[l] instead of B[i].

Conversely, for each A[i], B[l], whether i = l or not, if in Ĉ(GL) there is the macro-

transition A[i]
f−→−→−→
δ̂̂δ̂δ

B[l] this means that in C(GL) there was A
f−→−→−→
δδδ

B.

Furthermore, the construction of Ĉ(GL) does not produce counters that are not the
image of C(GL)’s counters under h−1, since all its transitions involving some A[i] come from
a corresponding C(GL)’s transition with A in place of A[i],

Construction of C(GL). As anticipated, the core of C(GL)’s construction moves from

Ĉ(GL) and, roughly speaking, consists in collapsing all states labeled by the index of the
same counter table and belonging to a counter sequence of a given counter into a single new
state named as the counter sequence itself and labeled by the index of the table it belongs
to.

The behavior of C(GL) is such that it is exactly like Ĉ(GL) (and as C(GL)) until it
reaches a state of some —unique— counter table, say state T1[i] of T [i] belonging to counter
C = (X[i], u) with X[i] = T1[i] . . . Tk[i]. At that point it uses the single state T1[i] as an

“entry point” to T [i]; it follows the whole path T1[i]
u−→−→−→ T2[i] . . . Tk[i]

u−→−→−→ T1[i] of the table up
to the last macro-step that would “close” the counter; at this point its next transition, instead
of going back to T1[i], enters a new state —named counter sequence state— representing the
whole counter sequence X[i] that includes the state T1[i].

Then, C(GL) loops along the horizontal cyclic permutations of the counter —a new
counter sequence state is built for every column of the counter table—, therefore without
counting the repetitions of the counter string u; in other words it “forgets the vertical cyclic
permutations” of the counter table. When C(GL) exits from the loop it nondeterministically
reaches any node that can be reached by any state belonging to the counter sequence state
it is leaving. Notice that exit from the loop occurs only as a consequence of a transition that
in C(GL) was not part of the counter table; such a transition may lead either to a state that

does not belong to the table, such as L
h−→−→−→ R in Figure 12, or to a state that is still part

of the table, such as A
c−→−→−→ L in the same figure. In the latter case the same table can be

re-entered, i.e., the original counting path may be resumed, but this must happen only by
going into an entry point of the table, not directly into the counter sequence state containing
it (the reason of this choice will be clear later); for instance in the case of Figure 12, the
transition that reads c (from the counter sequence state containing A) leads to instances of

L, not to the counter sequence state(s) containing it. Notice also that the transition A
c−→−→−→ L

may also occur in C(GL) during the “transient” before entering the counter sequence state:
this means that the counting path is interrupted before being completed for the first time
and possibly resumed from scratch (with a different entry point).
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Obviously, C(GL) will exhibit all behaviors of C(GL) plus more; we will see however,
that pairing such, say, descending behaviors with the ascending ones will allow us to discard
those that are not compatible with GL’s derivations.

We now describe in detail the construction of C(GL).
Let (Xm, u|m), where m = 0, 1, . . . j − 1, denote any counter of a counter table T

of C(GL) with Xm = Tm1 T
m
2 ...T

m
k , u|m = z(m mod j)+1z((m+1) mod j)+1...z((m+j−1) mod j)+1,

j ≥ 1, zi ∈W . Thus, (X0, u) is the reference counter of T and {(Xm, u|m) | m = 1, 2, . . . j}
are its horizontal cyclic permutations (if any, i.e., if j > 1). For every m = 1, 2, . . . j − 1,

l = 1, 2, . . . k, Tm−1
l

zm−→−→−→
δδδ

Tml , T j−1
l

zj−→−→−→
δδδ

T 0
(l mod k)+1.

To simplify the notation we will avoid the index identifying the single tables whenever
not necessary.

Points 1 through 6 of the construction below are identical whether they are applied to
states belonging to descending or ascending paths; thus we will not mark those states with �

or �.

(1) For each counter sequence Xm[i] = Tm1 [i] . . . Tmk [i] of counter table T [i] we define the
l-th pipeline PPLl(X

m[i]) as the sequence of all states traversed by the whole path of
the table starting from Tml [i] and ending in the state that precedes it in the counter
table —obviously traversed in cyclic way—. It is followed by the new state Xm[i], called
a counter sequence state, which is therefore the same for all pipelines PPLl(X

m[i]). The
first state Tml [i] is called the entry point of the pipeline.

For instance, with reference to Figure 12, PPL1(A[1]L[1]) is A[1]H[1]L[1]B[1] and
PPL2(A[1]L[1]) is L[1]B[1]A[1]H[1] both followed by the state AL[1].
Similarly, PPL1(H[1]B[1]) isH[1]L[1]B[1]A[1] and PPL2(H[1]B[1]) isB[1]A[1]H[1]L[1],
both followed by the state HB[1].

For each counter table, all pipelines of its counters are disjoint. Thus, for each table
with counter sequences of order k and string u consisting of j elements in W a collection
of (k · j)2 different copies of the original k · j states of the table plus j counter sequence
states are in the state space Q besides all original states that do not participate in any
counter table.

Notation. To distinguish the k · j replicas of the sequences that, for each pipeline lead
to the counter sequence states, we add a second index to the one denoting the counter
table, ranging from 0 to k · j − 1; the 0-th copy, e.g., H[2, 0], will denote the entry point
of each pipeline.

Let us now build C(GL)’s (macro)transitions δδδ.
(2) All transitions that do not involve states belonging to counter tables are replicated

identically from δ̂̂δ̂δ and therefore from δδδ.
(3) For all pipelines of all counters (Xm[i], u|m) of all tables T [i], all original transitions

of the table are replicated identically for each sequence by adding the further index
r, which is initialized to 0 for the entry point, but the last one that would “close the
counter”; precisely:
• The entry point of pipeline PPLl(X

m[i]) is Tml [i, 0];

the following transitions are added to to δδδ:

• for 1 ≤ l ≤ k, 1 ≤ m ≤ j − 1, 0 ≤ r < k · j − 1, Tm−1
l [i, r]

zm−→−→−→
δδδ

Tml [i, r + 1],

• if r < k · j − 1, T j−1
l [i, r]

zj−→−→−→
δδδ

T 0
(l mod k)+1[i, r + 1],
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• Tml [i, k · j − 1]
z(m mod j)+1−→−→−→

δδδ
X(m+1) mod j [i], which replaces the original

Tml [i]
z(m mod j)+1−→−→−→

δ̂̂δ̂δ
T
(m+1) mod j
p [i], where p = (l mod k)+1 if m = j− 1, p = l otherwise,

and X(m+1) mod j [i] is the counter sequence state containing T
(m+1) mod j
p [i].

In other words, this first set of transitions allows to enter a counter sequence state
from any state belonging to it, only by starting from the entry point of the pipeline
associated with that state, then to follow the whole path of the counter table and, at its
last step, to enter the new state of type counter sequence, of which the entry point is a
member.

As a particular case, if j = 1, there is only one counter sequence state X[i], all

pipelines have length k, and consist of transitions Tl[i, r]
u−→−→−→
δδδ

T(l mod k)+1[i, r + 1], with

0 ≤ r ≤ k − 1, but the last one which is Tl[i, k]
u−→−→−→
δδδ

X[i], where X[i] is the counter

sequence state containing T(l mod k)+1[i] which is also the entry point of the pipeline.
Notice that in some cases the same transition could be used as part of a counter table

path and as an exit way to it; since it leads to a state still belonging to the counter table,
its target will be the entry point of a pipeline of the same counter table. Example 7.18
illustrates this case.

(4) For all counter sequence states Xm[i] = Tm1 [i] . . . Tmk [i],

X(m+1) mod j [i] = T
(m+1) mod j
1 [i] . . . T

(m+1) mod j
k [i] of a table T [i],

if for any Tml [i], T
(m+1) mod j
p [i], z(m mod j)+1, T

m
l [i]

z(m mod j)+1−→−→−→
δ̂̂δ̂δ

T
(m+1) mod j
p [i]

(then it is also Tm((l+o) mod k)+1[i]
z(m mod j)+1−→−→−→

δ̂̂δ̂δ
T
(m+1) mod j
((p+o) mod k)+1[i] for all o; furthermore, either

p = l or p = (l mod k) + 1),

we set Xm[i]
z(m mod j)+1−→−→−→

δδδ
X(m+1) mod j [i].

Thus, once C(GL) entered a counter table with string u it can accept any number of
u, plus possibly a prefix and/or a suffix thereof, without counting them.

(5) Entering a counter. Counters can be entered only through the entry points of their

pipelines. This means that for each transition A
x−→−→−→
δ̂̂δ̂δ

B that does not belong to the

counter table T [i] but leads to a state B = Tml [i] thereof (notice that A could either

belong or not to T [i]) we add —only— A
x−→−→−→
δδδ

B[i, 0]. All other elements of the pipelines

that are not entry point and the counter sequence states can be accessed only through
the transitions built in points 3 and 4 above.

(6) Exiting a counter. Counters can be exited in two ways: either in the transient before
entering the counter sequence state, or exiting the loop that repeats the string u any
number of times without counting them. In the former case this is obtained by adding,
for each original transition of C(GL) that departs from a state of the counter table T [i]

and does not belong to the table, say Tml
x−→−→−→
δδδ

B, an instance thereof for all occurrences

of Tml [i, r] in the various pipelines of the counters. Notice that the target state B of such

transitions could either belong —as in the case of transition A
c−→−→−→ L of Figure 12— or

not to the same table: in the positive case it should be —only— the entry point labeled
B[i, 0] of the pipelines; in the negative case it could be a single state not belonging to
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any counter table or the entry point of some pipeline of a different table, say B[p, 0] (see
Figure 13 for the case of Figure 12).

Exiting the counter from the counter sequence state is obtained similarly by replicating

the original transition Tml
x−→−→−→
δδδ

B for the target state B in the same way as in the

previous case and by replacing the source state Tml with the counter sequence state
Xm[i] containing it.

(7) Finally, for each production A→ x of GL:

• If A does not belong to any counter of C(GL) only A� x−→−→−→ A� is in δδδ (this is already
implied by point 2 above).

• If there is some A�[i] in Q̂ but no A�[f ], i.e., A belongs to some descending counter

sequence X�[i] but to no ascending one, we set both A�[i, r]
x−→−→−→ A� for each r and

X�[i]
x−→−→−→ A� where A�[i, r] may denote either an entry point of the pipeline (r = 0)

or any other element thereof.
• If instead A� does not belong to any counter but there is some A�[f ], we set only

A� x−→−→−→
δδδ

A�[f, 0]; no transition A� x−→−→−→ X�[f ] or A� x−→−→−→
δδδ

A�[f, r] with r ̸= 0 is set,

however: this is due to our convention that counters can only be entered through
the single states that are entry points of a pipeline, whereas, once they entered the
counter sequence state they must be exited only therefrom.

• If in δ̂δδ there are transitions A�[i]
x−→−→−→ A�[f ], i.e. A belongs both to a descending counter

X� and to an ascending one X� of C(GL), then A�[i, r]
x−→−→−→ A�[f, 0], with r ≥ 0, and

X�[i]
x−→−→−→ A�[f, 0], are in δδδ but neither A�[i, r]

x−→−→−→ X�[f ], nor X�[i]
x−→−→−→ X�[f ], nor

A�[i, r]
x−→−→−→ A�[f, s], nor X�[i]

x−→−→−→ A�[f, s], with s ̸= 0 are included in δδδ for the same
reason as above.

To illustrate the main features of the above construction, as a first example, consider
again the fragment of Example 7.15: the corresponding fragment of C(GL) is depicted in
Figure 13; see also the further Example 7.18.

The following example, instead, explains why we introduced the pipelines as an input
for counter sequence states.

Example 7.17. The control graph of Figure 11 has shown that simply collapsing the states
of a counter sequence into a single state produces undesired side effects, such as spurious
counters. A first repair could consist in keeping the original states (of Ĉ(GL)) and using
them as an entry for the compound states, in some sense, a pipeline of length 1.

This solution too, however, is not enough. Consider, for instance, the fragment of control
graph in Figure 14 (left), no matter whether representing a descending or an ascending
fraction of the whole graph; it contains just one counter table with counters (AC, ab) and

(BD, ba); thus, the corresponding fraction of Ĉ(GL)) is isomorphic to the original graph. A
possible version of C(GL)) making use of single states to enter the counter sequence states
is given in Figure 14 (right) which shows a new counter table with counters (AP, ac) and
((BD)Q, ca) which do not correspond to the behavior of the original control graph.

The source of the problem abides in the fact that the path cac reentering state A after
leaving BD “forgot” that its source was D, not B; thus, it can go on in a way that does not
separate the two cases. The construction of C(GL)) making use of the full pipelines, on the
contrary, “compels” to reenter the counter from scratch, i.e., from the “real” A, from which
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Figure 13: The C(GL) fragment derived from the C(GL) and Ĉ(GL) of Example 7.15. The
gray boxes represent a collection of source or target states with the names
indicated in the box.

it would not be possible to bypass the path aba to reach again the state BD. This is why
counters may be entered only through their entry points.

Finally the example below points out that in some cases the same transition can be
used to follow the path of a counter table, but also to exit it, depending on the context
within which it occurs.

Example 7.18. Consider the counter table, say the i-th, consisting of the transition sequence

A
a−→−→−→ B, B

b−→−→−→ C, C
c−→−→−→ B, B

a−→−→−→ D, D
b−→−→−→ E, E

c−→−→−→ A. It produces pipelines with two
occurrences of symbol B with different indices as shown in Figure 15; this happens because
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Figure 14: A fragment of control graph with one counter table (left), and an erroneous
attempt to build a C(GL) version of the control graph fragment (right).

Figure 15: A significant fragment of the C(GL) derived from the transition sequence A
a−→−→−→ B,

B
b−→−→−→ C, C

c−→−→−→ B, B
a−→−→−→ D, D

b−→−→−→ E, E
c−→−→−→ A. For simplicity other similar

pipelines have been omitted.

the same transition, e.g., B
b−→−→−→ C is used both to follow the path of the counter table, as in

the above sequence, but could also exit it if applied after transition C
c−→−→−→ B. Notice that,

as a consequence, the figure displays two different states with the same name, B[i, 5]: we
decided to tolerate this “innocuous homonymy” to avoid a further state renaming.

Lemma 7.19. For any nonterminal A of GL, the regular languages consisting of all paths
of C(GL) going from anyone of A�, A�[i, r], X�[i], with A ∈ X�[i] to anyone of A�, A�[f, r],
X�[f ], with A ∈ X�[f ] are NC.
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Proof. The original “pure counters” of Ĉ(GL) have been “broken” by replacing the arrows
that would complete the string uk with transitions that enter a loop accepting u∗. Thus,
any pipeline associated with a counter whose string is u accepts sequences um, with m ≥ k.
All paths of C(GL) that do not touch counter sequence states existed in C(GL) too up to
the homomorphism that erases the indexes of the duplicated states.

The only transitions that are not replicas of transitions existing in Ĉ(GL) (and in
C(GL)) are those exiting the counter sequence states since they are derived from transitions
originating by some of the states belonging to the counter sequence, say X. If such transitions
originate paths that do not lead to any pipeline, i.e., that do not correspond to C(GL)’s
paths leading to some counter table, then such paths cannot contain any counter since they
simply replicate C(GL)’s paths with no counters. Suppose, instead, that such a path, after
reading a string z, reaches the entry point of a pipeline which, through a string vj leads to a
new counter: thus, the reading of z is only a finite prefix of a path that leads from a counter
sequence to another one (if instead the path of the pipeline reading vj is abandoned before
reaching the counter sequence state, it continues by replicating a path that existed already
in C(GL) without counters, up to a renaming of some states). Notice that, as a particular
case the new counter string v could be u again but referring to a different counter table,
therefore with disjoint states.

As a further special case, however, it could even happen that z is us (it cannot be u = zs

because by convention, u is the minimal string that can be associated with the counter table
— see Definition 7.9) and, by reading z, C(GL) re-enters a pipeline of the same table so that
after going through the whole pipeline we reach again state X. In this case we would have
closed a loop from X to X by reading the string us+k, thus, C(GL) would not be counter
free. Nevertheless, it is aperiodic since, together with us+k we would also find all strings
us+k+n for any n ≥ 0 because from X we can read any string in u∗.

At this point it would be possible to prove again Theorem 6.4 and its Corollary 6.5
for any GL by suitably replacing formulas φA with formulas referring to C(GL) instead of
C(GL). We would thus obtain FO definability of linear NC OPLs. This result however,
has already been obtained with much less effort in [MPC20]. Here we want to achieve the
general result for any NC OPL.

7.3. NC control graph for general NC OPGs. Let now G be a BDR OPG, GL its
associated linearized OPG, C(GL) the original control graph of GL and Ĉ(GL), C(GL) its
respective transformations obtained through their constructions (remember that C(GL) has
been built starting from Ĉ(GL)). A new OPG G′ = (Σ, V ′

N , P
′, S′) structurally equivalent to

G is built according to the following procedure.

Construction of G′.

• The nonterminal alphabet of G′, V ′
N consists of:

– All pairs (A�, A�) where A�, A� are singleton states of Q, i.e., states of C(GL) other
than counter sequence states. They include also singleton states belonging to pipelines,
i.e., states of type A�[i, r] or A�[f, s] if A belongs to some descending or ascending
counter.

– All pairs (X�
A, A

�), (A�, X�
A) where A

� and A� are singleton states of Q not belonging

to any descending, resp. ascending, counter and X�
A and X�

A are the counter sequence
states containing A� and A�, respectively.
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– The pairs (X�
A, X

�
A), (X

�
A, A

�[f, s]), (A�[i, r], X�
A) where X�

A and X�
A are the counter

sequence states belonging to two paired counter tables T [i], T [f ] and (A�[i, r], A�[f, s])
are elements of the corresponding pipelines. Thanks to Lemma 7.14, (X�

A, X
�
A) uniquely

identifies a nonterminal A of G.
– The same elements as in the point above where X�

A and X�
A are the counter sequence

states belonging to two non-paired counter tables T [i], T [f ], with the exclusion of the
pair (X�

A, X
�
A). Notice that, if the counter tables are not paired, Lemmas 7.12 and 7.14

do not apply; thus, it might happen that X�
A and X�

A share more that one nonterminal
of G.

• For convenience, in the following construction we use the notation [XA]
� (resp., [XA]

�)
to denote either the singleton state A� (resp. A�) or any counter sequence state XA

containing A, or any element of the corresponding pipelines.

• For every production A→ x of G the following productions are in P ′, for all [XA]
�:

– if A does not belong to any ascending counter, then ([XA]
�, A�) → x;

– if A belongs to an ascending counter, say f , then ([XA]
�, A[f, 0]�) → x (see point 7 of

C(GL)’s construction).
• For every production A→ B0x1B1 . . . xnBn of G (with xi ∈W ), where, as usual, B0 or
Bn may be missing, consider the following cases:
(1) A does not belong to any counter, either descending or ascending. Then the following

productions are in P ′:
(A�, A�) → ([YB0 ]

�, [YB0 ]
�)x1 . . . xn([YBn ]

�, [YBn ]
�) where, for each h, [YBh

]� is B�
h if

Bh does not belong to any descending counter, B�
h[i, 0] for any i such that Bh belongs

to a counter table T [i]. The [YBh
]� components are all the ones defined in V ′

N .
(2) A belongs to a descending counter table T [i] but not to any ascending one. Then the

following productions are in P ′:
– if no Bh belongs to T [i], then
([XA]

�, A�) → ([YB0 ]
�, [YB0 ]

�)x1 . . . xn([YBn ]
�, [YBn ]

�) where [XA]
� stands for all

A�[i, r] plus X�
A[i], and for each h, with 1 ≤ h ≤ n, [YBh

]� is B�
h if Bh does not

belong to any descending counter, B�
h[l, 0] for any l such that Bh belongs to a

counter table T [l], with l ̸= i. The [YBh
]� components are all the ones defined in

V ′
N .

– if there exists a h such that Bh belongs to T [i] —there can be at most one such h
because C(GL) describes only paths through the STs of G going from the root to a

leaf and back and Ĉ(GL) “separates” possible intersecting counter tables from each
other— then
([XA]

�, A�) → ([YB0 ]
�, [YB0 ]

�)x1 . . . xn([YBn ]
�, [YBn ]

�) where if [XA]
� is A�[i, r], with

0 ≤ r ≤ p− 1, where p is the length of the pipeline, [YBh
]� is B�

h[i, r+1]; if [XA]
� is

A�[i, p] or X�
A[i] [YBh

]� is Y �
Bh

[i]; all remaining elements of the rhs, including [YBh
]�,

are as in the previous item.
(3) A belongs to an ascending counter table T [f ] but not to any descending one. Then

the following productions are in P ′:
– If none of the Bh belongs to T [f ] then the lhs is (A�, A�[f, 0]) and the nonterminals
([YBh

]�, [YBh
]�) of the rhs are defined in the same way as in point (1) above.

– If there exists a unique Bh belonging to T [f ], then
(A�, [XA]

�) → ([YB0 ]
�, [YB0 ]

�)x1 . . . xn([YBn ]
�, [YBn ]

�)
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where if [YBh
]� is B�

h[f, s], with 0 ≤ s ≤ p − 1, [XA]
� is A�[f, s + 1]; if [YBh

]� is

B�
h[f, p] or Y

�
Bh

[f ], [XA]
� is X�

A[f ]; all remaining elements of the rhs, including

[YBh
]�, are as in the previous bullet.

(4) The case where A belongs to a descending counter table T [i] and to a paired ascending
one T [f ] can be treated as a natural combination of the previous (2) and (3), keeping
in mind Lemma 7.14.
Notice that, if the derivation involving the two paired counter tables is long enough
—precisely, more than 2 · ki · ji = 2 · kf · jf , where ki, ji, resp. kf , jf , are the order and
the number of W ’s elements of the descending, resp. ascending table— then a number
of consecutive nonterminals of G′ associated with G’s nonterminal A will be of type
(X�

A, X
�
A); the same will happen for the horizontal permutations of the counter which

A belongs to.
(5) A belongs to a descending counter table T [i] and to an ascending one T [f ] that are

not paired. In this case only one of the two tables can be followed by the derivation. In

other words, a derivation A
∗

==⇒ ukAv is interrupted to move to another “semicounting

derivation” A
∗

==⇒ zAwh, possibly partially overlapping. In this case both possibilities
are applied: all elements [XA]

� of the ascending pipeline, including the counter
sequence state, are paired with singleton elements of the descending pipeline excluding
the counter sequence state, and conversely, in all compatible ways. The elements of
the rhs are built in the same way as in points (2) and (3) above, respectively.
For instance, if A belongs to a descending counter (A�B�[1], a) and to an ascending
one (A�C�[2], b) a production A → aBb becomes the following G′’s productions
([XA]

�, [X ′
A]

�) → a([YB]
�, [YB]

�)b, ([X ′
A]

�, [XA]
�) → a([YB]

�, [YB]
�)b where [XA]

� (resp.
[XA]

�) stands for any element of the descending (resp. ascending) pipeline, including
AB�[1] (resp. AC�[2]) and [X ′

A]
� (resp. [X ′

A]
�) stands for any element of the descending

(resp. ascending) pipeline, excluding AB�[1] (resp. AC�[2]).15 See also Example 7.21.
• The axioms of G′ are:
– the pairs (A�, A�) where A is an axiom of G that does not occur in any counter table,
whether descending or ascending;

– all pairs (A�, [XA]
�) where A is an axiom of G that does not occur in any descending

counter table but occurs in some ascending ones;
– all pairs (A�[i, 0], [XA]

�) where A is an axiom of G that belongs to the descending
counter table T [i] and [XA]

�) denotes either A� or any element of an ascending pipeline
—including the counter sequence set— depending on whether or not A belongs to some
ascending counter table.

Intuitively, G′ splits all of G’s nonterminals into pairs representing elements of C(GL)’s
descending and ascending paths involving the same nonterminal of G. If one of C(GL)’s
states belongs to a counter sequence, this is recorded in the name of the new nonterminal
symbol which can be an element of the corresponding pipeline of C(GL). If a derivation
is following a descending or an ascending path of the syntax tree that is part of a counter
table, say the i-th, then that part of the path must obey the constraints given by the i-th
pipeline. Such constraints are given by C(GL) since all paths root-to-leaves and back of G′

are the same as those of GL. Notice that, whereas G is BDR, G′ is not; it may also contain
useless nonterminals.

The following examples illustrate the whole grammar transformation procedure.

15And, of course, the ([YB ]
�, [YB ]

�) respect the rules stated in points (2) and (3) above.
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Figure 16: The control graph C(GLNL)

Example 7.20. Consider again the grammar GNL of Examples 6.2, 6.3 and its linearized
version GLNL of Example 7.4.

The control graph of GLNL is given in Figure 16: it exhibits three ascending counters

(A�B�, cA), (A�B�, cB), (A�B�, εR); notice that the third one has no impact on the counting

property since we also have the self loops A� εR−→−→−→
δδδ

A�, B� εR−→−→−→
δδδ

B�. The corresponding C(GLNL)

is given in Figure 17.
G′
NL’s nonterminal alphabet is the set:

{(A�, A�[f, s]), (A�, AB�[f ]), (B�, B�[f, s]), (B�, AB�[f ]) | f = 1, 2, 3, s = 0, 1},
A significant sample of G′

NL’s rules is given below.
(A�, A[f, 0]�) → ac
(B�, B[f, 0]�) → bc
From the original G’s rule A→ aBcB we obtain the following rules, where [Y �

B [f ]], resp.

[Y �
B[l]], stands for either B

�[f, 1] or B�[f, 0] or AB�[f ], resp. B�[l, 1] or B�[l, 0] or AB�[l],
with f, l = 1, 2, 3, f ̸= l, h ̸= f, l:

(A�, A�[h, 0]) → a(B�, [Y �
B[f ]])c(B

�, [Y �
B[l]]),

(A�, A�[f, 1]) → a(B�, B�[f, 0])c(B�, [Y �
B[l]]),

(A�, AB�[f ]) → a(B�, B�[f, 1])c(B�, [Y �
B[l]]),

(A�, A�[l, 1]) → a(B�, [Y �
B[f ]])c(B

�, B�[l, 0]),

(A�, AB�[l]) → a(B�, [Y �
B[f ]])c(B

�, B�[l, 1]).
The rationale of the construction is that any (ascending, in this case) counter can be

interrupted leading only to the entry point of a different counter (or to a state not belonging
to any counter, in the general case). If instead we are following a specific counter marked
by its index f , the sequence of the states (in this case the ascending component of G′’s
nonterminal) must follow the sequence imposed by the f -th pipeline, whereas the other
nonterminals, which correspond to the B terminals of GLNL, may be of any type. The
remaining rules of G′ should now be easily inferred by analogy.
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Figure 17: The control graph C(GLNL). The upper part of the graph concerning the descend-
ing paths is not reported being identical to the original one of C(GLNL).

The following example instead highlights the ambiguity of G′ as a consequence of
introducing repeated rhs and the case of a grammar nonterminal belonging to both an
ascending and a descending counter, but not paired.

Example 7.21. Consider the following grammar Gcross, with S = {A,B}: A → aBc,
B → aAb | aCb | h, C → dBb.

It is easy to realize that C(Gcross) has a descending counter C�
1 = (A�B�, a) and an

ascending one C�
2 = (B�C�, b). Notice that nonterminal B occurs in both counter tables

but the two counters it belongs to are not paired. Without providing explicitly the whole
grammar G′

cross we display C(Gcross) in Figure 18.
A first derivation of Gcross is B ====⇒

Gcross

h. Since B is an axiom of Gcross, h ∈ L(G). In

G′
cross h can be derived —in one step— by the lhss (B�[1, 0], B�[2, 0]), (B�[1, 1], B�[2, 0]),

(AB�[1], B�[2, 0]); however, since only (B�[1, 0], B�[2, 0]) is an axiom of G′, h can be derived
as a string of L(G′) only through that nonterminal; the derivation (AB�[1], B�[2, 0]) ====⇒

G′
cross

h,
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Figure 18: The control graph C(Gcross). Notice that C�[2, 0] and B�[2, 1] are unreachable.

instead, could be used elsewhere as part of a longer G′
cross derivation. The fact that in the

lhs of G′
cross rule occur the labels of two different counter tables denotes the possibility that

it belongs to two different counters.
Imagine now that h occurs in the context d− b. This means that dhb has been derived

in Gcross by C
2

====⇒
Gcross

dhb; thus, no ambiguity remains and the only possible lhs for all rhs

d(B�[1, 0], B�[2, 0])b, d(B�[1, 1], B�[2, 0])b, d(AB�[1], B�[2, 0])b is (C�, C�[2, 1]).
The next derivation step of Gcross necessarily involves reducing the rhs aCb to B. This

step, however, could be a further step of the ascending counter C2 or could interrupt the
ascending counter and become an exit step from the descending counter C1. Thus, we have
two possible groups of lhs for a(C�, C�[2, 1])b, namely {(B�[1, 1], BC�[2]), (B�[1, 0], BC�[2])}
and {(B�[1, 1], B�[2, 0]), (B�[1, 0], B�[2, 0]), (AB�[1], B�[2, 0])}. Notice, instead, that point 5.
of G′ construction excludes the lhs (AB[1]�, BC�[2]) which would be superfluous.

If the next reduction involves the context a − c only C1 will be followed by applying
ambiguously one of the rules

(A�[1, 0], A�) → a(B�[1, 1], B�[2, 0])c,
(A�[1, 1], A�) → a(AB�[1], B�[2, 0])c,
(AB�[1], A�) → a(AB�[1], B�[2, 0])c,
(A�[1, 0], A�) → a(B�[1, 1], BC�[2])c,
where the last production could be used in a derivation where the counter C�

1 is being
followed but subsequently interrupted to conclude an instance of C�

2 . Symmetrically, if the
next reduction involves the context d− b only C2 will be followed.
Remark. Notice that the construction of G′ produces in its control graph a transition

C�[2, 1]
b−→−→−→ B�[2, 0] —and more— that has no correspondent transition in C(GLcross). This

is due to the fact that in this case the ascending pipeline could be interrupted but potentially
immediately resumed. Such new transitions could generate new counters which however
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would not make the control language counting as we already pointed out in Lemma 7.19;
see also the following Theorem 7.25.

Lemma 7.22. Let G be a BDR OPG and G′ the grammar derived therefrom according to
the above procedure.

For every A ∈ VN , A
∗

==⇒
G

x iff for some ([XA]
�, [XA]

�), ([XA]
�, [XA]

�)
∗

==⇒
G′

x.

Proof. Base of the induction. By construction of G′, A ==⇒
G

x iff for all [XA]
�, either

([XA]
�, A�) → x, or ([XA]

�, A�[f, 0]) → x, for any f such that A belongs to an ascending

counter table T [f ]. Moreover, by construction of C(GL), [XA]
� x−→−→−→

δδδ
A� or [XA]

� x−→−→−→
δδδ

A�[f, 0],

for all [XA]
�, whether the —possible— corresponding counter table T [i] is paired with T [f ]

or not.
Inductive step.

(1) From G′ to G. Assume that for m ≤ p and for each A ∈ VN , ([XA]
�, [XA]

�)
m
==⇒
G′

x

for some ([XA]
�, [XA]

�), implies A
m
==⇒
G

x. Consider a derivation ([XA]
�, [XA]

�)
∗

==⇒
G′

x1([YB1 ]
�, [YB1 ]

�) x2 . . . ([YBn ]
�, [YBn ]

�)
∗

==⇒
G′

x1 . . . xnwn, with ([YBh
]�, [YBh

]�)
mh==⇒
G′

wh,

mh ≤ p, xh ∈ W , 1 ≤ h ≤ n (notice that W is the same for both G and G′); for
simplicity, we treat only the case where ([YB0 ]

�, [YB0 ]
�) is missing and ([YBn ]

�, [YBn ]
�) is

present since the other cases are fully similar.

By the induction hypothesis Bh
∗

==⇒
G

wh. By construction of C(GL), for some [XA]
�,

[XA]
�, [YBh

]�, [YBh
]� the following transitions are in δδδ:

[XA]
� x1−→−→−→ [YB1 ]

�, [YBn ]
� εR−→−→−→ [XA]

�;

[YB1 ]
� x2B2...Bh−1xh−→−→−→ [YBh

]�, 2 ≤ h ≤ n;

[YBh
]�
xh+1Bh+1...Bn−→−→−→ [XA]

�, 1 ≤ h ≤ n− 1.
By construction of G′, if [XA]

� is an X�
A[f ] or A

�[f, s] for some f, s with s > 0, then,
for a unique h, [YBh

]� is B�[f, l], where l is the length of the corresponding pipeline, or
B�[f, s − 1], respectively (see point (3) of G′’s construction). Otherwise there are no
constraints between the pipeline indexes of the nonterminals of the rhs and that of the
lhs. This means that for some D� in [XA]

�, H�
h in [YBh

]�, D was lhs of a production of

G such as D → x1H1 . . . xnHn. For each h, however, Y
�
Bh

is paired with a unique B�
h or,

by Lemma 7.14, with an Y � such that there is exactly one B such that B�
h ∈ Y �

Bh
and

B�
h ∈ Y � so that for a unique Bh = Hh

∗
==⇒
G

wh. Thus, x1B1 . . . xnBn is a unique rhs of

G with a unique lhs D = A, so that A
∗

==⇒
G

x.

(2) From G to G′. Conversely, assume that for m ≤ p and for each A ∈ VN , A
m
==⇒
G

x implies

that for some ([XA]
�, [XA]

�), ([XA]
�, [XA]

�)
m
==⇒
G′

x (NB: there could be several ones

since G′ is not BDR). Consider a derivation A ==⇒
G

x1B1 . . . Bn
∗

==⇒
G

x1wn . . . wn, with

Bh
m
==⇒
G

wh, m ≤ p. By the induction hypothesis there exists at least one derivation

([XBh
]�, [XBh

]�)
m
==⇒
G′

wh for each h.
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Figure 19: A fragment of the control graph C(G′). The upper part of the graph depicts
the descending (single) states; the lower part shows only the entry points of the
ascending pipelines. A significant sample of transitions involving other elements

of the pipelines is: ∀f B�[f, 0]
ϵ−→−→−→ A�[f, 1].

The construction of G′ produces from G’s production A → x0B1 . . . Bn all possible
rules ([XA]

�, [XA]
�) → x1 ([XB1 ]

�, [XB1 ]
�)x2 . . . ([XBn ]

�, [XBn ]
�) that are compatible

with δδδ according to the above construction. Thus, there exists at least one rule in G′

([XA]
�, [XA]

�) → x1 ([XB1 ]
�, [XB1 ]

�) x2 . . . ([XBn ]
�, [XBn ]

�) for each ([XBh
]�, [XBh

]�)
∗

==⇒
G′

wh.

By taking into account how G′ axioms are derived from those of G we immediately
obtain the main theorem:

Theorem 7.23. The OPG G and the OPG G′ built from it on the basis of the above
construction are structurally equivalent.

The structural equivalence is an obvious consequence of the fact that the two grammars
share the same OPM.

The control graph of grammar G′, C(G′), is defined through a natural modification of
the original Definition 6.1: precisely, V �

N is the set of the left elements of V ′
N , and V �

N the set
of right elements thereof.

Figure 19 displays a fragment of C(G′) for the grammar of Example 7.20. Whereas the
transitions from descending states are complete, for brevity only the entry points of the
ascending part of the graph are displayed.

The following theorem extends Theorem 6.4 to the grammars such as G′ derived from
BDR OPGs.

Theorem 7.24. Consider formulas (6.3), (6.4) where the subscript A is replaced by all
pairs ([XA]

�, [XA]
�) as defined in the construction of G′. Thus formula φ([XA]�,[XA]�) defines
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the set {x | [XA]
� x−→−→−→ [XA]

�}. For any ([XA]
�, [XA]

�) ∈ V ′
N , x ∈ L(([XA]

�, [XA]
�)) if and

only if φ([XA]�,[XA]�)(0, |x|+ 1) ∧ ψ([XA]�,[XA]�) hold.

Proof. The proof is almost identical to that of Theorem 6.4, the only difference coming
from the fact that G′ is not BDR. Thus the

∨
of formula (6.3) must be extended to all G′

productions having any ([XA]
�, [XA]

�) as lhs. E.g., in the base of the induction, instead of
just one production A→ x we may have several ones of type ([XA]

�, [XA]
�) → x, each one

of them satisfying ψ([XA]�,[XA]�) with the corresponding lhs.

The following theorem is the last step to achieve FO definability of aperiodic OPLs.

Theorem 7.25. Let G′ be the grammar built from any NC BDR OPG G according to the
procedure given above and let C(G′) be its control graph. Then, for each ([XA]

�, [XA]
�) of G′

the set of paths [XA]
� w−→−→−→ [XA]

� is a NC regular language.

Proof. The fact that the set of paths is a regular language follows immediately from the
definition of the automaton as in Definition 6.1.

Consider a generic path [XA]
� w−→−→−→ [XA]

� of C(G′) with w = xvny with n sufficiently

large. Thus, there must exist a subpath of [XA]
� w−→−→−→ [XA]

� such as [X1
B]

� v−→−→−→ [X2
B]

�

v−→−→−→ . . .
v−→−→−→ [Xn

B]
�, with v = w1x1w2x2 . . . where wi are well parenthesized according to

the OPM and xi ∈ W , or similarly for an ascending path. Notice in fact that, being v’s
parenthesization uniquely determined by the OPM, [X l

B], 1 ≤ l ≤ n are either all [X l
B]

� or

all [X l
B]

�.

If for some i [Xi
B]

� = [Xi+1
B ]� then it is also [XA]

� xvn+ry−→−→−→ [XA]
� for every r ≥ 0. Suppose

instead that for some k > 1 [X1
B]

� v−→−→−→ [X2
B]

� v−→−→−→ . . . [Xk
B]

� v−→−→−→ [X1
B]

� with [Xi
B]

� ̸= [Xj
B]

�

for i ̸= j.
Since the original grammar G is BDR, for each wi there exists a unique Ci such that

Ci
∗

==⇒
G

wi. Thus, B�
l

v−→−→−→
δδδ

B�
(l+1) mod k in C(GL), where v is obtained from v by replacing

each wi with Ci; since (B�
1 . . . B

�
k, v) is a counter of C(GL), by construction of C(GL) it is

also X�
B

C1x1C2x2...−→−→−→
δδδ

X�
B for X�

B = B1 . . . B
�
k and any path including vk must also include

the counter sequence state X�
B. By replacing back Ci with wi we obtain X�

B
v−→−→−→ X�

B as

part of the path [X1
B]

� v−→−→−→ [X2
B]

� v−→−→−→ . . . [Xk
B]

� v−→−→−→ [X1
B]

�; thus [XA]
� w′
−→−→−→ [XA]

� for all
w′ = xvn+ry with r ≥ 0.

As a consequence of Theorem 7.25 all formulas φ([XA]�,[XA]�) of Theorem 7.24 can be
written in FO logic, so that the original MSO formulas 6.3, 6.4 become FO once applied to
grammar G′. Finally we have obtained our main result:

Theorem 7.26. Aperiodic operator precedence languages are FO definable.

8. Conclusion

Figure 20 summarizes the results presented in this paper together with previous related
ones. The outer boxes represent equivalent ways to express general OPLs, whereas the inner
ones represent equivalent ways to express aperiodic OPLs. Our results are in sharp contrast
with the difficulties encountered in the literature with the same problems in the realm of
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Legend

All boxes denote classes of OPLs with a common
OPM:

• MSO denotes OPLs defined through MSO
formulas

• FO denotes OPLs defined through FO formulas
• OPA denotes OPLs defined through OP

automata [LMPP15b]

• OPSC denotes OPLs defined through a
Syntactic Congruence with a finite number of

equivalence classes [HKMS23]

• OPE denotes OPLs defined through OPEs
• OPESF denotes languages defined through

star-free OPEs

• OPGNC denotes aperiodic OPLs, i.e.,
languages defined through NC OPGs

Arrows between boxes denote language family

inclusion; they are labeled by the reference

pointing to the section or paper where the

property has been proved (* is [LMPP15b], + is

[HKMS23]).

Figure 20: The relations among the various characterizations of OPLs and their aperiodic
subclass.

tree languages. OPLs, being “structured but not visible” provide greater generality in terms
of application fields than “structured and visible” languages such as tree languages and
VPLs. Consider, e.g., Example 6.7: the FO-definition given there for fully parenthesized
∧-∨ expressions can be easily extended to expressions where parentheses may be omitted
and replaced by the traditional precedence of the ∧ operator over the ∨ one in the same way
as it happens for arithmetic expressions. In that case it is the OPM that provides “for free”
the implicit structure.

We believe that the process that we followed to obtain the characterization of aperiodic
OPLs could be replicated in an analogous form to the case of VPLs. This path would start by
defining an aperiodic subclass of VPLs, then pass through an extension of regular expressions
and its star-free restriction, ending with the reduction of their logic characterization to first
order under the hypothesis of aperiodicity.

Figure 20 immediately suggests a further research step, i.e., making the inner triangle a
pentagon, as well as the outer one. We also hope that the articulated path that we used to
prove that NC OPLs are FO definable could be made shorter and more direct, although we
cannot forget that even in the case of regular languages such proof paths are rather complex,
e.g. [MP71], or the more recent and shorter [Wil99, DG08].

Another natural extension of the results reported in this paper is their generalization to
the case of ω-OPLs [LMPP15b], complementing, once again, previous studies on aperiodic
ω-regular languages (see, e.g., [Sel08, Wag79]).

There are other subclasses of regular languages related to the aperiodic ones; among
them we mention locally testable languages: intuitively, the distinguishing feature of these
languages is that one can decide whether a string belongs to a given language or not by
examining only substrings of bounded length. It is known [MP71] that aperiodic regular
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languages are the closure of the locally testable ones under concatenation. In [CGM78] we
proposed a first definition of locally testable parenthesis languages and showed that they are
strictly included in the NC ones. More recently local testability has been investigated for
tree languages and its potential application on data-managing systems has been advocated
[BSS12, PS11]. It could be worth investigating the relation of this property too with
aperiodicity and FO-definability for OPLs.

The most exciting goal that some researchers are pursuing, however, is the completion
of the great historical path that, for regular languages, led from the first characterization in
terms of MSO logic to the restricted case of FO characterization of NC regular languages,
to the temporal logic one which in turn is FO-complete, thanks to Kamp’s theorem [Rab14],
and, ultimately, to the striking success of model checking techniques.

Some proposals of temporal logic extension of the classic linear or branching time ones
to cope with the typical nesting structure of CF languages have been already offered in the
literature. E.g., [Mar05] presents an FO-complete temporal logic to specify properties of
paths in tree languages; [AAB+08, ACM11, BS14] present different cases of temporal logics
extended to deal with VPLs; they also prove FO-completeness of such logics.

We too have designed a first example of temporal logic for OPLs [CMP20] which recently
evolved into a new FO-complete and more user-friendly one [CMP22]. We also built an
algorithm that derives an OPA from a formula of this logic of exponential size in the
length of the formula and implemented a satisfiability and model checker which has been
experimentally tested on a realistic benchmark [CMP21]. Thanks to the result of this paper,
and to the fact that most, if not all, of the CF languages for practical applications are
aperiodic, the final goal of building model checkers that cover a much wider application field
than that of regular languages —and of various structured CF languages, such as VPLs,
too— with comparable computational complexity does not seem unreachable.

There are many jewels to extract from the old, but still rich, mine of OPLs.
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