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The problem of extending model checking from finite state machines to procedural programs has fostered

much research toward the definition of temporal logics for reasoning on context-free structures. The most

notable of such results are temporal logics on Nested Words, such as CaRet and NWTL. Recently, Precedence

Oriented Temporal Logic (POTL) has been introduced to specify and prove properties of programs coded

trough an Operator Precedence Language (OPL). POTL is complete w.r.t. the FO restriction of the MSO logic

previously defined as a logic fully equivalent to OPL. POTL increases NWTL’s expressive power in a perfectly

parallel way as OPLs are more powerful that nested words.

In this article, we produce a model checker, named POMC, for OPL programs to prove properties expressed

in POTL. To the best of our knowledge, POMC is the first implemented and openly available model checker

for proving tree-structured properties of recursive procedural programs. We also report on the experimental

evaluation we performed on POMC on a nontrivial benchmark.

CCS Concepts: • Software and its engineering→ Formal software verification; • Theory of computation

→Modal and temporal logics; Verification by model checking;

Additional Key Words and Phrases: Linear temporal logic, precedence oriented temporal logic, operator prece-

dence languages, model checking, visibly pushdown languages, input-driven languages

ACM Reference format:

Michele Chiari, Dino Mandrioli, Francesco Pontiggia, and Matteo Pradella. 2023. A Model Checker for Oper-

ator Precedence Languages. ACM Trans. Program. Lang. Syst. 45, 3, Article 19 (September 2023), 66 pages.

https://doi.org/10.1145/3608443

1 INTRODUCTION

Model Checking is a well-established technique for the analysis of both hardware and software
systems. In particular, the specification of regular properties has been extensively studied. To this
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regard, Linear Temporal Logic (LTL) has been introduced to express a large variety of safety
and liveness linear time properties.

Operational models for the system under verification often paired with LTL specifications are
Transition Systems (TSs) and Finite-State Automata (FSAs) (generally Büchi automata) [12].
Frameworks based on these formalisms, such as SPIN [50], affirmed themselves due to their ease
in reasoning, the conciseness of their logics with respect to the automata representation, and the
efficiency of the model checking algorithms when implemented in practice.

However, when focusing on procedural programs, the presence of the stack of activation records
constitutes a non-negligible feature that FSAs cannot model. Therefore, more adequate abstract
models of procedural programs are represented by Boolean Programs [13], Pushdown Systems [18,
38], and Recursive State Machines [3]. For all these stack-based formalisms problems such as state
and configuration reachability as well as the more complex model checking of regular specifications

have been thoroughly studied [3, 4, 18, 20, 34, 38, 42, 55, 70, 80]. They are able to mock up many
relevant behaviors of real-world programs, expressible by means of Context-Free Languages

(CFLs), rather than regular languages. Unfortunately, the set of properties expressible with LTL
corresponds only to the First-Order Logic (FOL) definable fragment of regular languages. Hence,
this logic is not suitable to formulate constraints on the managing of the procedure stack.

Example interesting properties include Hoare-style pre/post conditions on procedure calls and
returns, and stack-inspection properties at a particular execution point [51]. To fill the gap, some
efforts have been made to define logics based on subclasses of CFLs. These subclasses, while being
strictly more expressive than Regular Languages, retain the same properties that allow to use
them in automata-theoretic model checking. They are informally defined as Structured CFLs [59],
because the structure of the syntax tree of a sentence is built in the sentence itself, and in many
cases immediately visible.

A coherent approach in this direction is based on Visibly Pushdown Languages (VPLs) [9],
a.k.a Input-Driven Languages [64]. Two derived logics, namely CaRet [7] and its FO-complete suc-
cessor Nested Words Temporal Logic (NWTL) [2], allow to reason about program traces struc-
tured as Nested Words [10]. Such execution traces consist of the usual LTL linear ordering of events
augmented with a matching relation between procedure calls and returns. In this regard, they are
the first logics equipped with temporal modalities explicitly referring to the nested structure of
CFLs [4]. Through them, it is possible to express requirements regarding the mentioned context-
free behaviors [4]. System models are represented by Visibly Pushdown Automata (VPAs), the
automata class of VPLs. To complete the view, a μ-calculus based on VPLs extends model checking
to branching-time semantics in [6], while [19] introduces a temporal logic capturing the whole
class of VPLs.

On the practical side, the work on tools is not as rich as the theoretical one. Libraries such
as VPAlib [66], VPAchecker [76], OpenNWA [33] and Symbolic Automata [31] only implement
operations such as union, intersection, universality/inclusion/emptiness check for VPAs or Nested

Words Automata (NWAs), but have no model checking capabilities. PAL [22] uses nested-word
based monitors to express program specifications, and a tool based on blast [47] implements
its runtime monitoring and model checking. PAL follows the paradigm of program monitors, and
is not —strictly speaking— a temporal logic. [68, 69] describe a tool for model checking programs
against CaRet specifications. Since its purpose is malware detection, it targets program binaries
directly by modeling them as Pushdown Systems.

VPLs have some theoretical limitations as well. While being more expressive than Parenthesis
Languages [62], the matching relation is essentially constrained to be one-to-one. As a conse-
quence, they fail to reason about those behaviors in which a single event must be put into relation
with multiple ones. Such behaviors occur in programming languages that feature exceptions and

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 3, Article 19. Pub. date: September 2023.



A Model Checker for Operator Precedence Languages 19:3

exception handling, or in programs with control flow operators that allow the explicit manage-
ment (or reification) of the current continuation (such as call/cc). In such contexts, a single event
may cause the termination (or re-instantiation) of multiple procedures on the stack, by causing
the pop (or the push) of the corresponding activation frames.

To model-check such behaviors the more powerful formalisms of Operator Precedence Lan-
guages (OPLs) and related logics have been proposed. OPLs —and their generating Operator

Precedence Grammars (OPGs)— are a historical subfamily of CFLs invented by Robert Floyd
[39] to support efficient parsing. They are general enough to formalize most syntactic constructs
of mainstream programming languages [16, 32] including those mentioned above that cannot be
expressed as VPLs. In fact, OPLs strictly include VPLs but, despite the increased expressive power,
they are still closed under Boolean operations, concatenation, and Kleene *; thus, inclusion is de-
cidable for them (since emptiness is decidable for any CFL) [29, 59]. Alongside, a class of automata
accepting the OPL family has been given, namely Operator Precedence Automata (OPAs), to-
gether with their “ω-counterpart” i.e., Operator Precedence Büchi Automata (ωOPBAs) ac-
cepting infinite (or ω-) Operator Precedence words [58].

On the logic side, a Monadic Second-Order (MSO) logic equivalent to OPAs and OPGs has
been defined [58] and on its basis, the logic called Precedence Oriented Temporal Logic (POTL)

has been presented which is complete w.r.t. the First-Order (FO) restriction of the MSO logic [27]1;
thus, POTL gains in expressive power w.r.t. NWTL in a perfectly parallel way as OPLs gain over
VPLs.

Consider also that recently FO-definability of OPLs has been proved equivalent to the aperi-
odicity —or non-counting— property [60] as it happens for regular languages [63], a non-trivial
and somewhat surprising result since the same does not hold for tree-languages [49, 78]. Whereas
in the realm of finite state machines aperiodicity is not enjoyed in many practical cases —for in-
stance, various hardware devices are counters modulo some integer k > 1— it is quite unusual to
find counting features in normal programming languages: thus, POTL has a potential application
breadth even larger than LTL has for regular languages.

This article offers the final step needed to model-check structured programs against structured

properties. Its main contributions are:

— A tableaux-construction procedure for model checking POTL, which yields nondeterminis-
tic automata. Although the technicalities of the construction are much more involved than
the corresponding construction for LTL and even that for NWTL, its size is at most singly
exponential in the formula’s length, and is thus not asymptotically greater than that of LTL,
CaRet, and NWTL.

— An implementation of this procedure in a tool called Precedence Oriented Model Checker

(POMC) [23]. POMC is able to build the corresponding OPA (orωOPBA) of a POTL formula,
and is equipped with both a Reachability (for OPAs) and a Fair Cycle Detection algorithm
(for ωOPBAs) module; hence constitutes a full explicit-state model checker for POTL. To
the best of our knowledge, POMC is the only publicly-available tool for temporal logics ca-
pable of expressing context-free properties. For user-friendliness, POMC is equipped with a
domain-specific language called MiniProc. Programs written in MiniProc are then internally
translated into the automaton representation through an operational semantics.

— An extensive evaluation of the complexity of the model checking algorithm in practice, to
assess the tradeoff between the greater expressive power of OPL-based model checking and
its complexity.

1On the contrary, an earlier temporal logic for OPLs [25] is not FO-complete.
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An earlier version of POMC has been awarded the Functional, Reusable, and Available badges by
the CAV 2021 Artifact Evaluation Committee.

The article is organized as follows: Section 2 recalls some background on OPLs; POTL is intro-
duced in Section 3; the model checking procedure on finite words is given in Section 4, while the
case of ω-words is studied in Section 5; Section 6 supplies some implementation details of POMC;
Section 7 presents the benchmark adopted to evaluate the features and performances of POMC, the
main results of experiments carried over, and a —qualitative more than quantitative— comparison
with related tools. Finally, Section 8 summarizes our results in the context of previous literature
and delineates some potential future works. To make the reading more fluid and to help focusing
on the essentials a few technical details have been postponed to suitable appendices.

2 OPERATOR PRECEDENCE LANGUAGES

Operator Precedence Languages (OPLs) were originally defined through their generating gram-
mars [39]: Operator Precedence Grammars (OPGs) are a special class of Context-Free Gram-

mars (CFGs) in operator normal form—i.e., grammars in which right-hand sides (rhs’s) of
production rules contain no consecutive non-terminals2—. As a consequence, in the Syntax Trees

(STs) generated by such grammars the children of any node never exhibit two consecutive internal
nodes.

The distinguishing feature of OPGs is that they define three Precedence Relations (PRs) be-
tween pairs of input symbols which drive the deterministic parsing and therefore the construction
of a unique ST, if any, associated with an input string. For this reason, we consider OPLs a kind
of input-driven languages, but larger then the original ones by K. Mehlhorn [64] (later known as
VPLs [10]). The three PRs are denoted by the symbols �, �,� and are respectively named yields

precedence, equal in precedence, and takes precedence. They graphically resemble the traditional
arithmetic relations but do not share their typical ordering and equivalence properties; we kept
them for “historical reasons”, but we recommend the reader not to be confused by the similarity.

Intuitively, given two input characters a,b belonging to a grammar’s terminal alphabet, sepa-
rated by at most one non-terminal, a � b iff, in some grammar derivation, b is the first terminal
character of a grammar’s rhs following a whether or not the grammar rule contains a non-terminal
character before b (for this reasons we also say that non-terminal characters are “transparent” in
OPL parsing); a � b iff a and b occur consecutively in some rhs, possibly separated by one non-
terminal; a � b iff a is the last terminal in a rhs —whether followed or not by a non-terminal—,
and b follows that rhs in some derivation. The following example provides a first intuition of how
a set of unique PRs drives the parsing of a string of terminal characters in a deterministic way;
subsequently the above concepts are formalized.

Example 2.1. Consider the alphabet of terminal symbols Σcall = {call, ret, han, exc, stm}: as the
chosen identifiers suggest, call represents the fact that a procedure call occurs, ret represents the
fact that a procedure terminates normally and returns to its caller, exc that an exception is raised,
han that an exception handler is installed, and stm represents a statement that does not affect the
stack, such as an assignment. We want to implement a policy such that an exception aborts all
the pending calls up to the point where an appropriate handler is found in the stack, if any; after
that, execution is resumed normally. Calls and returns, as well as possible pairing of handlers and
exceptions are managed according to the usual LIFO policy. The alphabet symbols are written in
boldface for reasons that will be explained later but are irrelevant for this example.

2Every CFG can be effectively transformed into an equivalent one in operator form [46].
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Fig. 1. The OPM Mcall.

Fig. 2. The sequence of bottom-up reductions during the parsing of wex .

The above policy is implemented by the PRs described in Figure 1 which displays the PRs
through a square matrix, called Operator Precedence Matrix (OPM), where the element of row
i and column j is the PR between the symbol labeling row i and that of column j. We also add
the special symbol # which is used as a string delimiter and state the convention that it yields
precedence to all symbols in Σcall, and that all symbols in Σcall take precedence over it.

Let us now see how the OPM of Figure 1, named Mcall, drives the construction of a unique ST
associated to a string on the alphabet Σcall through a typical bottom-up parsing algorithm. We will
see that the shape of the obtained ST depends only on the OPM and not on the particular grammar
exhibiting the OPM. Consider the sample wordwex = call han call call call exc call ret call ret ret.
First, add the delimiter # at its boundaries and write all precedence relations between consecutive
characters, according to Mcall. The result is row 0 of Figure 2.

Then, select all innermost patterns of the form a � c1 � · · · � c� � b. In row 0 of Figure 2 the
only such pattern is the underscored call enclosed within the pair (�,�). This means that the ST
we are going to build, if it exists, must contain an internal node with the terminal character call

as its only child. We mark this fact by replacing the pattern �call� with a dummy non-terminal
character, say N —i.e., we reduce call to N—. The result is row 1 of Figure 2.

Next, we apply the same labeling to row 1 by simply ignoring the presence of the dummy symbol
N and we find a new candidate for reduction, namely the pattern �call N�. Notice that there is
no doubt on building the candidate rhs as �call N�: if we reduced just the call and replaced it by
a new N , we would produce two adjacent internal nodes, which is impossible since the ST must
be generated by a grammar in operator normal form.

By skipping the obvious reduction of row 2, we come to row 3. This time the terminal characters
to be reduced, again, underscored, are two, with an � and an N in between. This means that they
embrace a subtree of the whole ST whose root is the node represented by the dummy symbol N . By
executing the new reduction leading from row 3 to 4 we produce a new N immediately to the left
of a call which is matched by an equal in precedence ret. Then, the procedure is repeated until the
final row 7 is obtained, where, by convention we state the � relation between the two delimiters.

Given that each reduction applied in Figure 2 corresponds to a derivation step of a grammar
and to the expansion of an internal node of the corresponding ST, it is immediate to realize that
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Fig. 3. The ST corresponding to word wex . Dots represent non-terminals.

the ST of wex is the one depicted in Figure 3, where the terminal symbols have been numbered
according to their occurrence —including the conventional numbering of the delimiters— for future
convenience, and labeling internal nodes has been omitted as useless.

The tree of Figure 3 emphasizes the main difference between various types of parenthesis-like
languages, such as VPLs, and OPLs: whereas in the former ones every open parenthesis is con-
sumed by the only corresponding closed one,3 in our example, a call can be matched by the ap-
propriate ret but can also be “aborted” by an exc which in turn aborts all pending calls until its
corresponding han —if any— is found.

Remark. The examples adopted in this article are inspired by the important feature of exception-
handling which is typical of most real-life programming languages but cannot be well-defined
in terms of VPLs. Exception-handling, however, is not the only programming language feature
that can be expressed in OPLs but not in less powerful formalisms [58]. Furthermore, although
“hierarchies of exceptions” can be managed, e.g., in colored VPLs [8] and in higher-order recursion

schemes [44], OPLs allow to express non-hierarchically typed exceptions too.

Thus, an OPM defines a universe of strings on the given alphabet that can be parsed according to
it and assigns a unique ST —with unlabeled internal nodes— to each one of them. Such a universe
is the whole Σ∗ iff the OPM is complete, i.e., it has no empty cells, including those of the implicit
row and column referring to the delimiters. In the early literature about OPLs, e.g., [30, 39] OPGs
sharing a given OPM were used to define restricted languages w.r.t. the universe defined by the
OPM and their algebraic properties have been investigated. Later on, the same operation has been
defined by using different formalisms such as pushdown automata, monadic second order logic,
and suitable extensions of regular expressions. In this article, we refer to the use automata and
temporal logic, which are typical of model checking. As a side remark we mention that, in general,
it may happen that in the same string there are several patterns ready to be reduced, without
generating any ambiguity; this could enable the implementation of parallel parsing algorithms
(see e.g., [16]) which however is not an issue of interest in this article.

We now state the basics of OPLs needed for this article in a formal way. Let Σ be a finite alphabet,
and ε the empty string. We use the special symbol # � Σ to mark the beginning and the end of any
string.

3To be precise, VPLs allow for unmatched closed parentheses but only at the beginning of a string and unmatched open

ones at the end.
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Definition 2.2. An Operator Precedence Matrix (OPM) M over Σ is a partial function (Σ ∪
{#})2 → {�, �,�}, that, for each ordered pair (a,b), defines the precedence relation M (a,b) holding
between a and b. If the function is total we say that M is complete. We call the pair (Σ,M ) an Op-
erator Precedence (OP) alphabet. By convention, the initial # yields precedence to other symbols,
and other symbols take precedence on the ending #.

If M (a,b) = π , where π ∈ {�, �,�}, we write a π b. For u,v ∈ (Σ ∪ {#})+ we write u π v if
u = xa and v = by with a π b.

The next concept of chain makes the connection between OP relations and ST structure explicit,
through brackets.

Definition 2.3. A simple chain c0 [c1c2 . . . c�]c�+1 is a string c0c1c2 . . . c�c�+1, such that: c0, c�+1 ∈
Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . � (� ≥ 1), and c0 � c1 � c2 . . . c�−1 � c� � c�+1.

A composed chain is a string c0s0c1s1c2 . . . c�s�c�+1, where c0 [c1c2 . . . c�]c�+1 is a simple chain, and
si ∈ Σ∗ is either the empty string or is such that ci [si ]

ci+1 is a chain (simple or composed), for every
i = 0, 1, . . . , � (� ≥ 1). Such a composed chain will be written as c0 [s0c1s1c2 . . . c�s�]c�+1 . In a chain,
simple or composed, c0 is called its left context and c�+1 its right context; the string of characters
between them is called its body.

A finite wordw over Σ is compatible with an OPM M iff for each pair of letters c,d , consecutive
inw , M (c,d ) is defined and, for each substring x of #w# which is a chain of the form a[y]b , M (a,b)
is defined. For a given OP alphabet (Σ,M ) the set of all words compatible with M is called the
universe of the OP alphabet.

The chain below is the chain defined by the OPM Mcall of Figure 1 for the word wex . It shows
the natural isomorphism between STs with unlabeled internal nodes (see Figure 3) and chains.

#[call[[[han[call[call[call]]]exc]call ret]call ret]ret]#

Note that, in composed chains, consecutive inner chains, if any, are always separated by at least
one input symbol: this is due to the fact that OPL strings are generated by grammars in operator
normal form.

Next, we introduce operator precedence automata as pushdown machines suitable to carve spe-
cific OPLs within the universe of an OP alphabet.

Definition 2.4. An Operator Precedence Automaton (OPA) is a tuple A = (Σ,M,Q, I , F ,δ )
where: (Σ,M ) is an OP alphabet, Q is a finite set of states (disjoint from Σ), I ⊆ Q is the set of
initial states, F ⊆ Q is the set of final states, δ is a triple of transition relations δshift ⊆ Q × Σ ×Q ,
δpush ⊆ Q × Σ ×Q , and δpop ⊆ Q ×Q ×Q .

An OPA is deterministic iff I is a singleton, and all three components of δ are —possibly partial—
functions.

To define the semantics of OPAs, we need some new notations. Letters p,q,pi ,qi , . . . denote

states in Q . We use q0
a−→ q1 for (q0,a,q1) ∈ δpush, q0

a
� q1 for (q0,a,q1) ∈ δshift , q0

q2

=⇒ q1 for

(q0,q2,q1) ∈ δpop, andq0
w� q1, if the automaton can readw ∈ Σ∗ going fromq0 toq1. Let Γ be Σ×Q

and Γ′ = Γ ∪ {⊥} be the stack alphabet; we denote symbols in Γ as [a, q]. We set smb ([a, q]) = a,
smb (⊥) = #, and st ([a, q]) = q. For a stack content γ = γn . . .γ1⊥, with γi ∈ Γ , n ≥ 0, we set
smb (γ ) = smb (γn ) if n ≥ 1, and smb (γ ) = # if n = 0.

A configuration of an OPA is a triple c = 〈w, q, γ 〉, where w ∈ Σ∗#, q ∈ Q , and γ ∈ Γ∗⊥. A
computation or run is a finite sequence c0  c1  . . .  cn of moves or transitions ci  ci+1. There are
three kinds of moves, depending on the PR between the symbol on top of the stack and the next
input symbol:
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push move if smb (γ ) � a then 〈ax , p, γ 〉  〈x , q, [a, p]γ 〉, with (p,a,q) ∈ δpush;

shift move if a � b then 〈bx , q, [a, p]γ 〉  〈x , r , [b, p]γ 〉, with (q,b, r ) ∈ δshift ;

pop move if a � b then 〈bx , q, [a, p]γ 〉  〈bx , r , γ 〉, with (q,p, r ) ∈ δpop.

Shift and pop moves are not performed when the stack contains only ⊥. Push moves put a new
element on top of the stack consisting of the input symbol together with the current state of the
OPA. Shift moves update the top element of the stack by changing its input symbol only. Pop moves
remove the element on top of the stack, and update the state of the OPA according to δpop on the
basis of the current state and the state in the removed stack symbol. They do not consume the
input symbol, which is used only as a look-ahead to establish the � relation. The OPA accepts
the language L(A) =

{
x ∈ Σ∗ | 〈x#, qI , ⊥〉 ∗ 〈#, qF , ⊥〉,qI ∈ I ,qF ∈ F

}
.

Definition 2.5. Let A be an OPA. We call a support for the simple chain c0 [c1c2 . . . c�]c�+1 any

path in A of the form q0
c1−→ q1 � · · · � q�−1

c�� q�
q0

=⇒ q�+1. The label of the last (and only)
pop is exactly q0, i.e., the first state of the path; this pop is executed because of relation c� � c�+1.

We call a support for the composed chain c0 [s0c1s1c2 · · · c�s�]c�+1 any path in A of the form

q0
s0� q′0

c1−→ q1
s1� q′1

c2� . . .
c�� q�

s�� q′�
q′0
=⇒ q�+1

where, for every i = 0, 1, . . . , �: if si � ε , then qi
si� q′i is a support for the chain ci [si ]

ci+1 , else
q′i = qi .

Consider the OPA A (Σ,M ) = (Σ,M, {q}, {q}, {q},δmax ) where δmax
push

(q, c ) = δmax
shift

(q, c ) = q,

∀c ∈ Σ, and δmax
pop (q,q) = q. We call it the OP Max-Automaton over (Σ,M ). For a max-automaton,

each chain has a support; thus, a max-automaton accepts exactly the universe of the OP alphabet.
If a[s]b is a chain over (Σ,M ), A (Σ,M ) performs the computation 〈sb,q, [a,q]γ 〉 ∗ 〈b,q,γ 〉, and
there exists a support like the one above with s = s0c1 . . . c�s� . This corresponds to the parsing
of the string s0c1 . . . c�s� within the context a,b, which contains all information needed to build
the subtree whose frontier is that string. If M is complete, the language accepted by A (Σ,M )
is Σ∗. With reference to the OPM Mcall of Figure 1, the string ret call han is accepted by the
max-automaton with structure defined by the chain #[[ret]call[han]]#. This string cannot be in-
terpreted as a normal program trace: later, we will show how we can build OPAs that only accept
strings that make sense as program traces.

In conclusion, given an OP alphabet, the OPM M assigns a unique structure to any compatible
string in Σ∗; unlike VPLs, such a structure is not visible in the string, and must be built by means of
a non-trivial parsing algorithm. An OPA defined on the OP alphabet selects an appropriate subset
within the universe of the OP alphabet. OPAs form a Boolean algebra whose universal element
is the max-automaton. The language classes recognized by deterministic and non-deterministic
OPAs coincide. For a more complete description of the OPL family and of its relations with other
CFLs we refer the reader to [59].

2.1 Operator Precedence ω-Languages

All definitions regarding OPLs are extended to infinite words in the usual way, but with a few
distinctions [58].

Given a set of characters Δ, by Δω we mean the set of all infinite words made of characters in
Δ.

Given an OP-alphabet (Σ,M ), an ω-word w ∈ Σω is compatible with M if every prefix of w is
compatible with M . OP ω-words are not terminated by the delimiter #.

An ω-word may contain never-ending chains of the form c0 �c1 � c2 � · · · , where the � relation
between c0 and c1 is never closed by a corresponding �. Such chains are called open chains and
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may be simple or composed. A composed open chain may contain both open and closed subchains.
Of course, a closed chain cannot contain an open one. A terminal symbol a ∈ Σ is pending if it is
part of the body of an open chain and of no closed chains.

OPA classes accepting the whole class of Operator Precedenceω-Languages (ωOPLs) can be
defined by augmenting Definition 2.4 with Büchi or Muller acceptance conditions. In this article,
we only consider the former one.

Definition 2.6 (Operator Precedence Büchi Automaton (ωOPBA)). Let an ωOPBAA, its con-
figurations and moves be defined as for OPAs accepting finite strings.

An infinite run on an ω-word w is an infinite sequence ρ = 〈x0 = w,q0,γ0〉  〈x1,q1,γ1〉  . . ..
Define the set of states that occur infinitely often in ρ as

Inf (ρ) = {q ∈ Q | there exist infinitely many positions i s.t. 〈xi ,q,γi 〉 ∈ ρ}.
A run ρ is successful iff there exists a state qf ∈ F such that qf ∈ Inf (ρ).A acceptsw ∈ Σω iff there
is a successful run ofA onw . Theω-language recognized byA isL(A) = {w ∈ Σω | A accepts w }.

Unlike OPAs, ωOPBAs do not require the stack to be empty for word acceptance: when reading
an open chain, the stack symbol pushed when the first character of the body of its underlying
simple chain is read remains into the stack forever; it is at most updated by shift moves.

The most important closure properties of OPLs are preserved by ωOPLs, which form a Boolean
algebra and are closed under concatenation of an OPL with anωOPL [58]. The equivalence between
deterministic and nondeterministic automata is lost in the infinite case, which is unsurprising,
since it also happens for regular ω-languages and ωVPLs.

In our model-checking procedures, we will need a slight variation on ωOPBAs:

Definition 2.7 (Generalized ωOPBA). A generalized ωOPBA is a tuple A = (Σ,M,Q, I , F,δ ),
where Σ,M,Q, I ,δ are the same as in Definition 2.4, and F ⊆ P (Q ) is the set of sets of Büchi-
final states.

The semantics of configurations, moves and runs are defined as for ωOPBAs. The acceptance
condition is, again, different: a run ρ on anω-word is successful iff for all Fi ∈ F there exists a state
qi ∈ Fi such that qi ∈ Inf (ρ).

Generalized ωOPBA can be translated to normal ωOPBA polynomially:

Theorem 2.8. LetA = (Σ,M,Q, I , F,δ ) be a generalizedωOPBA. It is possible to build anωOPBA

A′ with |Q | · |F| states such that L(A′) = L(A).

The proof uses a classic construction based on counters [54], and is thus omitted. Since the
translation from simple to generalized ωOPBAs is trivial, the two classes are equivalent and enjoy
the same closure properties.

A more complete treatment of OPLs’ properties and parsing algorithms can be found in [43, 59];
ωOPLs are treated in-depth in [58].

2.2 Modeling Procedural Programs by Means of OPA

We now introduce the MiniProc language, which allows the programmer to express algorithms
in a more customary style than the automata-theoretic OPA. MiniProc retains the most important
features of traditional C-like programming languages; special attention is devoted to the exception
handling mechanism and its consequences in the managing of the stack, which is a distinguishing
feature of OPLs. With our tool POMC, the user has the choice of expressing their algorithms as
OPAs or as MiniProc programs; in the latter case our tool automatically “compiles” MiniProc into
the OPA formalism to be checked against the logic specification language POTL.
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Fig. 4. MiniProc syntax and a MiniProc program. In the syntax, non-terminals are uppercase, and keywords
lowercase. Parts in square brackets are optional, and ellipses mean that the enclosing group can be repeated
zero or more times. An IDENTIFIER is any sequence of letters, numbers, or characters “.”, “:”, and “_”, starting
with a letter or an underscore. An INT is an unsigned integer literal.

Figure 4(a) shows the MiniProc syntax while Figure 4(b) presents a first example of MiniProc
program that will be exploited in Example 2.9.

A program starts with global variable declarations. MiniProc supports finite-width integer vari-
ables, both signed and unsigned, and arrays. Then, a sequence of functions is defined, the first one
being the entry-point to the program. Functions may have positional parameters, passed by value
(default) or by value-result (by adding &). Function bodies consist of semicolon-separated local
variable declarations and statements. Assignments, while loops and ifs have the usual semantics.
The token * means nondeterminism: when used in a guard, it means that both branches can be
taken nondeterministically; when used in an assignment, it means the assigned variable may take
any value allowed by its type. The try-catch statement executes the catch block whenever an
exception is thrown by any statement in the try block (or any function it calls). Exceptions are
raised by the throw statement, and they are not typed (i.e., there is no way to distinguish different
kinds of exceptions). Functions can be called by prepending their name to actual parameters sur-
rounded by parentheses. Integer expressions can be composed with the usual arithmetic operators,
and Boolean operators, which automatically convert integers to Booleans (0 means false, � 0 true).
All integer literals must be prepended to their type (e.g., 42u8 is the value 42 represented as an
8-bit unsigned integer).

OPAs —or ωOPBAs— semantically equivalent to MiniProc programs are automatically gener-
ated by POMC by following a path inspired by previous similar translations of the literature, e.g.,
[4].

The automaton’s alphabet is that of OPM Mcall, whose symbols are paired with identifiers of
the MiniProc language in such a way that there is a one-to-one correspondence between the au-
tomaton’s alphabet and the statements of the program. Precisely, the assignment to a variable
corresponds to symbol stm possibly paired with the identifier of the assigned variable, the call of a
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procedure corresponds to symbol call paired with the procedure identifier (notice that a procedure
call may occur also as part of a catch block); the end of any procedure (syntactically its final })
corresponds to ret paired with the procedure identifier; the installation of a handler —the try part
of try-catch block— corresponds to the han symbol paired with the identifier of the procedure
in the scope of which the handler is declared.

Besides symbols in Σcall, transitions are also labeled with all variable identifiers that are in the
scope of the statement they represent and that are true in that moment. For integer variables, we
use the common convention that considers them “true” when they are non-zero. Note that, if a
variable can take multiple values (e.g., because of a “*” assignment), a different execution path for
each one of the possible values is created.

Finally, the throw statement corresponds to the exc symbol with no further labels since ex-
ceptions are not typed in MiniProc. The PRs of the new alphabet are the same as Mcall, simply
“forgetting” the additional identifiers.4 The construction of the OPAs is performed in two phases
as in the similar cases of the literature.

First, an extended OPA is generated, in which every state corresponds to a position of the
MiniProc program reached during its execution, and transitions are labeled by the statement whose
execution they represent and, possibly, by Boolean expression guards that must be true for them to
be performed. A shift transition labeled “dummy exc”, with appropriate target state, is also added
to represent the exit from a try-catch block in a symmetric way as the return from a procedure
call, i.e., when the scope of the handler is closed without generating a corresponding exception.
Pop transitions represent the “completion” of a statement but do not necessarily mean that the
MiniProc interpreter deallocates anything from its stack: e.g., the pop transition that follows the
reading of a ret does mean that an activation record is popped out from the MiniProc stack, but
even an assignment statement is represented by a push transition immediately followed by a pop
one in the OPA.

Then, the extended OPA is translated into a normal one. The key point here consists in enu-
merating all feasible variable assignments for each state, and by labeling transitions with Boolean
variables that hold when they are triggered. This clearly exposes to the risk of a typical state-space
explosion. On the other hand, however, some clean-up is performed, e.g., by eliminating (parts cor-
responding to) unfeasible branches of the code.

More details of the above construction will be shown in the following Example 2.9.
It should be now clear that the obtained OPA is equivalent to the original MiniProc program in

the sense that the language it accepts is isomorphic to the successful runs of the MiniProc inter-
preter, and the sentences it rejects are isomorphic to the runs resulting into some error, whenever

its execution terminates.
A problem arises, however, when MiniProc runs do not terminate. OPAs in fact, always termi-

nate by definition since they need input explicitly terminated by a #, and the OPM is such that either
they halt because some PR is not defined or they always reach the final #. Thus, when the MiniProc
program does not terminate, the corresponding input string for the OPA becomes anω-string. The
obvious consequence is that OPAs can be used only to check properties of programs that we know
a priori to terminate. In the opposite case, we must resort to ωOPBAs, which, however, work only
on ω-languages whose sentences are all infinite.

Many properties, therefore, typically just termination itself, could not be checked neither us-
ing OPA nor using ωOPBAs. In such cases we resort to a fairly typical solution: we transform

4As already anticipated in Example 2.1, the purpose of using the boldface character for some labels will be fully clarified

in Section 3.
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Fig. 5. The two steps of OPA generation from the code of Figure 4(b).

a MiniProc program that exhibits both finite and infinite behaviors into an automaton that only
accepts infinite traces, by creating anωOPBA such that traces produced by a terminating MiniProc
program are transformed into non-terminating ones by adding stuttering states after the return
statement of the main procedure. These stuttering states are linked by transitions that actually
read dummy input symbols: we chose to add an infinite sequence of calls and returns of a dummy
function, but other choices are possible (e.g., a dummy stm, or a new symbol). In this way, to check
termination, we can check reachability of the ret statement of the main function. With this con-
struction, all properties checked on such an ωOPBA are checked on both finite and infinite traces
of the original MiniProc program, and we can use appropriate formulas to restrict them to only
finite or infinite ones.

Next, we give two examples with complementary purposes: Example 2.9 aims at illustrating
the main features of extended OPAs, their translation into normal OPAs, and their typical manag-
ing of the stack that allows for popping several items without reading any input character —the
non-real-time behavior that increases OPLs’ expressive power w.r.t. other pushdown automata for
structured languages.

Example 2.10 exploits the well-known algorithm Quicksort to argue that the OPL formalism
is general enough to express even sophisticated algorithms in a natural way and to hint that the
MiniProc language can easily evolve into a complete programming language. More arguments to
support such a claim can be found in previous literature, e.g., [59]. Both examples are exploited
in Section 7 as the core of the benchmark we adopted to evaluate the performances of our model-
checking tool POMC.

Example 2.9. Figure 5(a) shows the extended OPA derived from the code in Figure 4(b). The
stack semantics of the two models coincide: a symbol is pushed for every function call (call), and
popped after the corresponding return (ret) or exception (exc). Handlers (han) are paired with the
exception they catch by a shift move updating the same symbol; a dummy exception is placed after
the try body to uninstall the handler, whereas a simple exc is generated in correspondence of an
explicit throw statement. Assignments are denoted by a stm, which causes a push immediately
followed by a pop. Mcall defines the context-free structure of the word, which is strictly linked
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Fig. 6. The “Buggy” Quicksort algorithm in MiniProc.

with the programming language semantics: the � PR causes nesting (e.g., calls can be nested into
other calls), and the � PR implies a one-to-one relation, e.g., between a call and the ret of the same
function, and a han and the exc it catches.

The resulting OPA is in Figure 5(b). The assignment of true to foo is propagated forward from
state A0, and the branch from A2 to B0 and B2 is removed, because B0 is unreachable. The last
part of the OPA generation leads to a worst-case model size exponential in the number of non-
deterministic assignments (not shown in the example for brevity). However, as we shall see in
Section 7, it performs well in many practical cases, because only feasible states are generated.

When an OPA is generated, the set of final states only contains the last state of the “main” module
(M1 in the example). When an ωOPBA is generated, all states are marked as final. If the MiniProc
program contains an actual infinite loop, this will result in an accepting loop in the ωOPBA. An
accepting stuttering state is also added at the end of the ωOPBA, so that finite behaviors can be
modeled too. Thus, the ωOPBA accepts all possible traces of the program; the desirable ones will
be discriminated by the requirement to be checked.

Example 2.10. Figure 6 shows a recursive MiniProc implementation of the QuickSort algorithm.
We show it to demonstrate the syntax of MiniProc through a classic example, but we do not re-
port the resulting ωOPBA due to its size. In Section 7, we will use this and other programs as
benchmarks for our model checking tool.

The goal of Quicksort is to sort in-place an input array in ascending order with a divide-and-
conquer strategy: at every iteration, an element is chosen as the “pivot”, and the array is split in
two subarrays which contain, respectively, all the elements smaller than the pivot, and all the ele-
ments greater than the pivot. The two subarrays are recursively sorted with the same strategy. The
program employs two global variables: the array “a” to be sorted, and Boolean variable “sorted”,
which indicates whether the array is sorted. The latter one is set and updated every time a swap
of cell values is performed. In the figure, the array is composed of 4 elements, but in Section 7 we
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study it on larger and smaller arrays, too. “u3” indicates that array elements are 3-bit unsigned
integers, hence their domain is [0, 7]. The main() procedure first assigns a nondeterministic value
for each array cell, and then calls the QuickSort procedure qs() on the array. qs() uses 5 local
variables: left, right, lo, hi, piv. The first four contain array indices: they are signed integers
of 4 bits having domain [−7, 7] (their type name is “s4”). piv contains an array value, so it has
the same type as array cells. This procedure is taken from [37], where an equivalent C program is
given. It is called “Buggy Quicksort” because it enters an infinite loop when the array contains two
cells with the same value, thus termination is not guaranteed. In such a case, qs() will continue
swapping and calling itself recursively on the same pair of cells. In Section 7.2.2, we prove that
the generated ωOPBA has an accepting loop that pushes the same stack symbol at every recursive
call, growing the stack indefinitely.

3 PRECEDENCE ORIENTED TEMPORAL LOGIC

POTL is a linear-time temporal logic, which extends the classical LTL. We recall that the semantics
of LTL [71] is defined on a Dedekind-complete set of word positions U equipped with a total
ordering, and monadic relations, called Atomic Propositions (APs). In this article, we consider a
discrete timeline, hence U = {0, 1, . . . ,n}, with n ∈ N, or U = N. Each LTL formula φ is evaluated
in a word position: we write (w, i ) |= φ to state that φ holds in position i of word w .

Besides operators from propositional logic, LTL features modalities that define relations be-
tween positions; e.g., the Next modality states that a formula holds in the subsequent position
of the current one: (w, i ) |= �φ iff (w, i + 1) |= φ; the Until modality states that there exists a
linear path, made of consecutive positions and starting from the current one, such that a formula
ψ holds in the last position of such path, and another formula φ holds in all previous positions.
Formally, (w, i ) |= φU ψ iff there exists j ≥ i s.t. (w, j ) |= ψ , and for all j ′, with i ≤ j ′ < j, we have
(w, j ′) |= φ.

The linear order, however, is not sufficient to express properties of more complex structures
than the linear ones, typically the tree-shaped ones, which are the natural domain of context-free
languages. The history of logic formalisms suitable to deal with CFLs somewhat parallels the path
that lead from regular languages to tree-languages [77] or their equivalent counterpart in terms
of strings, i.e., parenthesis languages [62].

A first logic mechanism aimed at “walking through the structure of a context-free sentence” was
proposed in [57] and consists in a matching condition that relates the two extreme terminals of the
rhs of a context-free grammar in so-called double Greibach normal form, i.e., a grammar whose
production rhs exhibit a terminal character at both ends: in a sense such terminal characters play
the role of explicit parentheses. [57] provides a logic language for general CFLs based on such a
relation which however fails to extend the decidability properties of logics for regular languages
due to lack of closure properties of CFLs. The matching condition was then resumed in [10] to
define its MSO logic for VPLs and the temporal logics CaRet [7] and NWTL [2].

OPLs are structured but not “visibly structured” as they lack explicit parentheses (see Section 2).
Nevertheless, a more sophisticated notion of matching relation has been introduced in [58] for
OPLs by exploiting the fact that OPLs remain input-driven thanks to the OPM. We name the new
matching condition chain relation and define it here below. We fix a finite set of atomic propositions
AP , and an OPM MAP on P (AP ).

A word structure —also called OP word for short— is the tuple (U , <,MAP , P ), where U , <, and
MAP are as above, and P : AP → P (U ) is a function associating each atomic proposition with the
set of positions where it holds, with 0, (n + 1) ∈ P (#). For the time being, we consider just finite
string languages; the necessary extensions needed to deal with ω-languages will be introduced in
Section 3.2.
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Fig. 7. The OP-word of which the string wex of Example 2.1 is the homomorphic image. Chains are high-
lighted by arrows joining their contexts; structural labels are in bold, and other atomic propositions are
shown below them. pl means that a call or a ret is related to procedure pl . First, procedure pA is called
(position 1), and it installs an exception handler in position 2. Then, three nested procedures are called, and
the innermost one (pC ) throws an exception, which is caught by the handler. Two more functions are called
and, finally, pA returns.

Definition 3.1 (Chain Relation). The chain relation χ (i, j ) holds between two positions i, j ∈ U iff
i < j − 1, and i and j are respectively the positions of the left and right contexts of the same chain
(cf. Definition 2.3), according to MAP and the labeling induced by P .

In the following, given two positions i, j, and a PR π , we write i π j to say a π b, where
a = {p | i ∈ P (p)}, and b = {p | j ∈ P (p)}. For notational convenience, we partition AP into
structural labels, written in bold face, which define a word’s structure, and normal labels, in round
face, defining predicates holding in a position. Thus, an OPM M can be defined on structural labels
only, and MAP is obtained by inverse homomorphism of M on subsets of AP containing exactly
one of them.

To obtain an intuitive idea of how the chain relation augments the linear structure of a word
with the tree-like structure of OPLs consider Figure 7: it displays an OP-word on the alphabet
of the OPA of Figure 5(b) whose image under the homomorphism projecting the OPA’s alphabet
onto the boldface components is the word wex from Example 2.1. Since the OPM of the OPA is
isomorphic to that of Figure 1, the ST of the OP-word of Figure 7 is isomorphic to that of Figure 3.
Thus, for simplicity, in the following, we will refer to the ST of Figure 3 as if it was the ST of
the OP-word of Figure 7. Notice also that, rigorously speaking, the OP-word of the figure is not
accepted by the OPA although it is compatible with its OPM, since the OPA —and the MiniProc
program from which it is derived— necessarily perform the assignment statement foo = true at
the beginning of procedure pA. We omitted that statement in the OP-word to help focusing on the
stack management policy and how it is reflected in the χ relation.

Figure 7 emphasizes the distinguishing feature of the relation, i.e., that, for composed chains,
it may not be one-to-one, but also one-to-many or many-to-one. Notice also the correspondence
between internal nodes in the ST of Figure 3 and pairs of positions in the χ relation.

In a ST, we say that the right context j of a chain is at the same level as the left one i when i � j
(e.g., in Figure 3, position 1 with 11 and 2 with 6), at a lower level when i � j (e.g., position 1 with
7, and 9), at a higher level if i � j (e.g., positions 3 and 4 with 6).

Given i, j ∈ U , relation χ has the following properties:

(1) It never crosses itself: if χ (i, j ) and χ (h,k ), for any h,k ∈ U , then we have i < h < j =⇒
k ≤ j and i < k < j =⇒ i ≤ h.

(2) If χ (i, j ), then i � i + 1 and j − 1 � j.
(3) Consider all positions (if any) i1 < i2 < · · · < in s.t. χ (ip , j ) for all 1 ≤ p ≤ n. We have i1 � j

or i1 � j and, if n > 1, iq � j for all 2 ≤ q ≤ n.
(4) Consider all positions (if any) j1 < j2 < · · · < jn s.t. χ (i, jp ) for all 1 ≤ p ≤ n. We have i � jn

or i � jn and, if n > 1, i � jq for all 1 ≤ q ≤ n − 1.

Property 4 says that when the chain relation is one-to-many, the contexts of the outermost chain
(i1 and j) are in the � or � relation, while the inner ones are in the � relation. We call i1 the leftmost
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context of j. Property 3 says that contexts of outermost many-to-one chains (i and jn ) are in the �
or � relation, and the inner ones are in the � relation. We call jn the rightmost context of i . Such
properties are proved in [27] for readers unfamiliar with OPLs.

The χ relation is the core of the MSO logic characterization for OPLs given in [58]; as a natural
consequence of the greater generality of OPLs over VPLs, the MSO logic for the former family has
a greater expressive power than the one for the latter family. Indeed, such a greater power requires
more technical analysis which, however, allows to prove the same important results in terms of
closure properties, decidability and complexity of the constructions, as those holding for VPLs and
the corresponding MSO logic.

Similarly, in [27] we show that the temporal logic POTL is FO-complete as well as NWTL,
despite the greater complexity of the χ relation. To complete the path, in this article, we produce
model checking algorithms for POTL and OPLs with the same order of complexity as those for
NWTL and VPLs.

While LTL’s linear paths only follow the ordering relation <, paths in POTL may follow
the χ relation too. As a result, a POTL path through a string can simulate paths through the
corresponding ST.

We envisage two basic types of path. The first one is that of summary paths. By following the
chain relation, summary paths may skip chain bodies, which correspond to the fringe of a subtree
in the ST. We distinguish between downward and upward summary paths (respectively DSP and
USP). Both kinds can follow both the < and the χ relations; DSPs can enter a chain body but cannot
exit it so that they can move only downward in a ST or remain at the same level; conversely, USPs
cannot enter one but can move upward by exiting the current one. In other words, if a position
k is part of a DSP, and there are two positions i and j, with i < k < j and χ (i, j ) holds, the next
position in the DSP cannot be ≥ j. E.g., two of the DSPs starting from position 1 in Figure 7 are
1-2-3, which enters chain χ (2, 6), and 1-2-6, which skips its body. USPs are symmetric, and some
examples thereof are paths 3-6-7 and 4-6-7.

Since the χ relation can be many-to-one or one-to-many, it makes sense to write formulas that
consider only left contexts of chains that share their right context, or vice versa. Thus, the paths
of our second type, named hierarchical paths, are made of such positions, but excluding outermost
chains. E.g., in Figure 7, positions 2, 3, and 4 are all in the χ relation with 6, so 3–4 is a hierarchical
path (χ (2, 6) is the outermost chain). Symmetrically, 7–9 is another hierarchical path. The reason
for excluding the outermost chain is that, with most OPMs, such positions have a different semantic
role than internal ones. E.g., positions 3 and 4 are both calls terminated by the same exception,
while 2 is the handler. Positions 7 and 9 are both calls issued by the same function (the one called
in position 1), while 11 is its return. This is a consequence of properties 3 and 4 above.

In the next subsection, we describe in a complete and formal way POTL for finite string OPLs
while in the subsequent subsection we briefly describe the necessary changes to deal with ω-
languages.

3.1 POTL Syntax and Semantics

Given a finite set of atomic propositions AP , let a ∈ AP , and t ∈ {d,u}. The syntax of POTL is the
following:

φ ::= a | ¬φ | φ ∨ φ | �t φ | �t φ | χ t
F φ | χ

t
P φ | φU

t
χ φ | φ St

χ φ | �t
H φ | �t

H φ | φU t
H φ | φ St

H φ.

The truth of POTL formulas is defined w.r.t. a single word position. Let w be an OP word, and
a ∈ AP . Then, for any position i ∈ U of w , we have (w, i ) |= a iff i ∈ P (a). Propositional operators
such as ∧, ∨ and ¬ have their usual semantics. Next, while giving the formal semantics of other
POTL operators, we illustrate it by showing how it can be used to express properties on program
execution traces, such as the one of Figure 7.
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Next/back operators. The downward next and back operators �d and �d are like their LTL
counterparts, except they are true only if the next (respectively current) position is at a lower or
equal ST level than the current (respectively preceding) one. The upward next and back, �u and
�u , are symmetric. Formally, (w, i ) |= �d φ iff (w, i + 1) |= φ and i � (i + 1) or i � (i + 1), and
(w, i ) |= �d φ iff (w, i−1) |= φ, and (i−1)�i or (i−1)� i . Substitute � for � to obtain the semantics
for �u and �u .

E.g., we can write �d
call to say that the next position is an inner call (it holds in positions 2, 3,

4 of Figure 7), �d
call to say that the previous position is a call, and the current one is the first of

the body of a function (positions 2, 4, 5), or the ret of an empty one (positions 8, 10), and �u
call

to say that the current position terminates an empty function frame (holds in 6, 8, 10). In position
2 �d pB holds, but �u pB does not.

Chain Next/Back. The chain next and back operators χ t
F

and χ t
P

evaluate their argument re-
spectively on future and past positions in the chain relation with the current one. The downward

(respectively upward) variant only considers chains whose right context goes down (respectively
up) or remains at the same level in the ST. Formally, (w, i ) |= χd

F
φ iff there exists a position j > i

such that χ (i, j ), i � j or i � j, and (w, j ) |= φ. (w, i ) |= χd
P
φ iff there exists a position j < i such

that χ (j, i ), j � i or j � i , and (w, j ) |= φ. Replace � with � for the upward versions.
E.g., in position 1 of Figure 7, χd

F
pErr holds because χ (1, 7) and χ (1, 9), meaning that pA calls

pErr at least once. Also, χu
F

exc is true in call positions whose procedure is terminated by an excep-
tion thrown by an inner procedure (e.g. positions 3 and 4). χu

P
call is true in exc statements that

terminate at least one procedure other than the one raising it, such as the one in position 6. Notice
that, although the upper label of the χu

P
operator is a u, the calls in positions 3 and 4 are below the

exc in position 6 in the ST: this is due to the fact that the u label refers to the left-to-right direc-
tion of the involved chain. χd

F
ret and χu

F
ret hold in calls to non-empty procedures that terminate

normally, and not due to an uncaught exception (e.g., position 1).

(Summary) Until/Since operators. POTL has two kinds of until and since operators. They
express properties on paths, which are sequences of positions obtained by iterating the different
kinds of next or back operators. In general, a path of length n ∈ N between i, j ∈ U is a sequence
of positions i = i1 < i2 < · · · < in = j. The until operator on a set of paths Γ is defined as follows:
for any word w and position i ∈ U , and for any two POTL formulas φ and ψ , (w, i ) |= φ U (Γ) ψ
iff there exist a position j ∈ U , j ≥ i , and a path i1 < i2 < · · · < in between i and j in Γ such
that (w, ik ) |= φ for any 1 ≤ k < n, and (w, in ) |= ψ . Since operators are defined symmetrically.
Note that, depending on Γ, a path from i to j may not exist. We define until/since operators by
associating them with different sets of paths.

The summary until ψ U t
χ θ (respectively since ψ St

χ θ ) operator is obtained by inductively ap-

plying the �t and χ t
F

(respectively �t and χ t
P

) operators. It holds in a position in which either
θ holds, or ψ holds together with �t (ψ U t

χ θ ) (respectively �t (ψ St
χ θ )) or χ t

F
(ψ U t

χ θ ) (respec-

tively χ t
P

(ψ St
χ θ )). It is an until operator on paths that can move not only between consecutive

positions, but also between contexts of a chain, skipping its body. With reference to a MiniProc
program modeled as an OPA, this means skipping function bodies. The downward variants can
move between positions at the same level in the ST (i.e., in the same simple chain body), or down
in the nested chain structure. The upward ones remain at the same level, or move to higher levels
of the ST.

Formula �Uu
χ exc is true in positions contained in the frame of a function that is terminated by

an exception. It is true in position 3 of Figure 7 because of path 3–6, and false in position 1, because
no upward path can enter the chain whose contexts are positions 1 and 11. Formula �Ud

χ exc is
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true in call positions whose function frame contains excs, but that are not directly terminated by
one of them, such as the one in position 1 (with path 1-2-6).

We formally define Downward Summary Paths (DSPs) as follows. Given an OP word w , and
two positions i ≤ j in w , the DSP between i and j, if it exists, is a sequence of positions i = i1 <
i2 < · · · < in = j such that, for each 1 ≤ p < n,

ip+1 =
⎧⎪⎨⎪⎩
k if k = max{h | h ≤ j ∧ χ (ip ,h) ∧ (ip � h ∨ ip � h)} exists;

ip + 1 otherwise, if ip � (ip + 1) or ip � (ip + 1).

The Downward Summary (DS) until and since operators Ud
χ and Sd

χ use as Γ the set of DSPs

starting in the position in which they are evaluated. The definition for the Upward Summary
Paths (USPs), on which Upward Summary (US) until and since are based, is obtained by substi-
tuting � for �. For instance, in Figure 7, callUd

χ (ret ∧ pErr ) holds in position 1 because of path

1-7-8 and 1-9-10, (call ∨ exc) Su
χ pB in position 7 because of path 3-6-7, and (call ∨ exc)Uu

χ ret in
3 because of path 3-6-7-8.

Hierarchical operators. A single position may be the left or right context of multiple chains.
The operators seen so far cannot keep this fact into account, since they “forget” about a left context
when they jump to the right one. Thus, we introduce the hierarchical next and back operators.
The upward hierarchical next (respectively back), �u

H
ψ (respectively �u

H
ψ ), is true iff the current

position j is the right context of a chain whose left context is i , andψ holds in the next (respectively
previous) position j ′ that is a right context of i , with i � j, j ′. So, �u

H
pErr holds in position 7 of

Figure 7 because pErr holds in 9, and �u
H

pErr in 9 because pErr holds in 7. In the ST, �u
H

goes up

between calls to pErr , while �u
H

goes down. Their downward counterparts behave symmetrically,
and consider multiple inner chains sharing their right context. They are formally defined as:

— (w, i ) |= �u
H
φ iff there exist a position h < i s.t. χ (h, i ) and h � i and a position j = min{k |

i < k ∧ χ (h,k ) ∧ h � k } and (w, j ) |= φ;
— (w, i ) |= �u

H
φ iff there exist a position h < i s.t. χ (h, i ) and h � i and a position j = max{k |

k < i ∧ χ (h,k ) ∧ h � k } and (w, j ) |= φ;
— (w, i ) |= �d

H
φ iff there exist a position h > i s.t. χ (i,h) and i � h and a position j = min{k |

i < k ∧ χ (k,h) ∧ k � h} and (w, j ) |= φ;
— (w, i ) |= �d

H
φ iff there exist a position h > i s.t. χ (i,h) and i � h and a position j = max{k |

k < i ∧ χ (k,h) ∧ k � h} and (w, j ) |= φ.

In the ST of Figure 3, �d
H

and �d
H

go down and up among calls terminated by the same exc. For

example, in position 3 �d
H

pC holds, because both positions 3 and 4 are in the chain relation with 6.

Similarly, in position 4 �d
H

pB holds. Note that these operators do not consider leftmost/rightmost
contexts, so �u

H
ret is false in position 9, as call � ret, and position 11 is the rightmost context of

position 1.
The hierarchical until and since operators are defined by iterating these next and back operators.

The Upward Hierarchical Path (UHP) between i and j is a sequence of positions i = i1 < i2 <
· · · < in = j such that there exists a positionh < i such that for each 1 ≤ p ≤ n we have χ (h, ip ) and
h�ip , and for each 1 ≤ q < n there exists no positionk such that iq < k < iq+1 and χ (h,k ). The until
and since operators based on the set of UHPs starting in the position in which they are evaluated
are denoted as Uu

H
and Su

H
. E.g., callUu

H
pErr holds in position 7 because of the singleton path

7 and path 7–9, and call Su
H

pErr in position 9 because of paths 9 and 7–9.
The Downward Hierarchical Path (DHP) between i and j is a sequence of positions i = i1 <

i2 < · · · < in = j such that there exists a position h > j such that for each 1 ≤ p ≤ n we have
χ (ip ,h) and ip � h, and for each 1 ≤ q < n there exists no position k such that iq < k < iq+1 and
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χ (k,h). The until and since operators based on the set of DHPs starting in the position in which
they are evaluated are denoted as Ud

H
and Sd

H
. In Figure 7, callUd

H
pC holds in position 3, and

call Sd
H

pB in position 4, both because of path 3–4.

Equivalences. POTL until and since operators enjoy expansion laws similar to those of LTL. Here
we give laws for until operators, those for their since counterparts being symmetric. They were
originally formulated in [27]; those referring to hierarchical operators, however, suffered from a
minor inaccuracy, which is fixed in the present version.

φ U t
χ ψ ≡ ψ ∨

(
φ ∧
(�t
(
φ U t

χ ψ
)
∨ χ t

F

(
φ U t

χ ψ
)))

for t ∈ {d,u}

φ Uu
H ψ ≡

(
ψ ∧ χ�P �

)
∨
(
φ ∧�u

H

(
φ Uu

H ψ
))

φ Ud
H ψ ≡

(
ψ ∧ χ�F �

)
∨
(
φ ∧�d

H

(
φ Ud

H ψ
))
,

where χ�P � is the restriction of χd
P
� to chains having their left context in the � PR with the right

one. Formally, for any POTL formula γ we define χ�P γ :=
∨

a,b⊆AP, a�b (σa ∧ χd
P

(σb ∧ γ )), where
for any c ⊆ AP , σc :=

∧
p∈c p ∧∧q�c ¬q holds in a position i iff c is the set of atomic propositions

holding in i . χ�F � is defined symmetrically. We will make a more systematic use of these specialized
chain operators in Section 4.

As in LTL, it is worth defining some useful derived operators. For t ∈ {d,u}, we define the
downward/upward summary eventually as �t φ := �U t

χ φ, and the downward/upward summary

globally as �t φ := ¬�t (¬φ). �u φ and �u φ respectively say that φ holds in one or all positions
in the path from the current position to the root of the ST. Their downward counterparts consider
all positions in the current rhs and its subtrees, starting from the current position. �d φ says that
φ holds in at least one of such positions, and �d φ in all of them. E.g., if �d (¬pA) holds in a call, it
means that pA never holds in its whole function body, which is the subtree rooted next to the call.
This way, the LTL globally operator �ψ can be expressed in POTL as �ψ := ¬�u (�d ¬ψ ) [27].

3.2 POTL on ω-Words

Since applications in model checking usually require temporal logics on infinite words, we extend
POTL to ω-words.

To define OP ω-words, it suffices to replace the finite set of positions U with the set of natural
numbers N in the definition of OP words. OP ω-words contain open chains, and property 4 of the
χ relation does not hold if a position i is the left context of an open chain. In fact, there may be
positions j1 < j2 < · · · < jn such that χ (i, jp ) and i � jp for all 1 ≤ p ≤ n, but no position k such
that χ (i,k ) and i � k or i � k .

The formal semantics of all POTL operators remains the same as in Section 3.1. The only dif-
ference in its intuitive meaning is caused by open chains. Due to the change in property 4, χu

F

operators never hold on the left contexts of open chains, and χd
F

may hold only in positions that
are also left contexts of some closed chain, with contexts in the � relation (provided the operand
holds in the right context). Downward hierarchical operators also never hold when evaluated on
left contexts of open chains.

3.3 Expressing Requirements in POTL

POTL can express many useful requirements of procedural programs: to illustrate its practical
applications in automatic verification, we supply a few examples of typical program properties
expressed as POTL formulas. In Section 7 we will show the outcomes of checking these—and many
other—formulas against several benchmark programs.
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POTL can express Hoare-style pre/postconditions. For instance, formula �(call ∧ ρ =⇒
χd

F
(ret ∧ θ )) specifies that if the precondition ρ holds when a procedure is called, then the post-

condition θ must hold when it returns. This formula is false if a call is terminated by an exception.
Unlike NWTL, POTL can easily express properties related to exception handling and interrupt

management. The shortcut CallThr (ψ ) := �u (exc ∧ψ ) ∨ χu
F

(exc ∧ψ ), evaluated in a call, states
that the procedure currently invoked is terminated by an exc in which ψ holds. So, �(call ∧ ρ ∧
CallThr (�) =⇒ CallThr (θ )) means that if precondition ρ holds when a procedure is called,
then postcondition θ must hold if that procedure is terminated by an exception. In object oriented
programming languages, if ρ ≡ θ is a class invariant asserting that a class instance’s state is
valid, this formula expresses weak (or basic) exception safety [1], and strong exception safety if ρ
and θ express particular states of the class instance. The no-throw guarantee can be stated with
�(call ∧ pA =⇒ ¬CallThr (�)), meaning procedure pA is never interrupted by an exception.

Stack inspection [36, 51] is an important class of requirements that state something about the
sequence of procedures active in the program’s stack at a certain point of its execution. They can
be expressed with shortcut Scall (φ,ψ ) := (call =⇒ φ)Sd

χ (call ∧ψ ), which means thatψ holds in

a call representing one of the currently active function frames, and φ holds in all calls in the stack
between it and the current position. This shortcut has the same purpose of the call since operator
of CaRet, which is also a since operator on calls currently in the stack, but thanks to other POTL

operators, it works with exceptions too. For instance,�
(
(call∧pB∧Scall (�, pA)) =⇒ CallThr (�)

)

means that whenever pB is executed and at least one instance of pA is on the stack, pB is terminated
by an exception.

With reference to Example 2.10 formula χu
F

(ret∧main) must hold in position 1 to guarantee that
the program terminates on any input array, and formula χu

F
(sorted) —with an obvious definition

of sorted— specifies that it is correct w.r.t. the sorting goal. We will see in Section 7.2.2 that they
are not guaranteed, i.e., the program is “buggy”.

For a thorough comparison of POTL with other temporal logics for structured languages see
[27, Section 3.4].

4 FINITE-WORD MODEL CHECKING

The model checking procedure we give for POTL follows the classic automata-theoretic approach
for LTL, adapting it to work with OPA for the finite-word case, and ωOPBA for the infinite-word
case. Thus, we define a construction for automata that accept models of an arbitrary POTL formula,
and prove its correctness. This construction is significantly more involved than the one for LTL
and reflects the differences between regular languages and OPLs, although the final automaton
size remains singly exponential in formula length.

We give the finite-word construction in this section, and then we adapt it toω-words in Section 5.
In Section 4.1 we describe the construction, and we prove its correctness in Section 4.2. Finally,
Section 4.3 analyzes the computational complexity of POTL satisfiability and model checking.

4.1 Automaton Construction

Given an OP alphabet (P (AP ),MAP ) and a formula φ, we build an OPA Aφ = (P (AP ),MAP ,Q, I ,
F ,δ ). We describe the construction ofQ , I , F , and δ based on fixpoint computations that build these
sets starting from a set of constraints. Since POTL contains a large number of operators, some of
which being quite complex, we define and explain constraints related to each operator separately.
Their correctness proof follows the same strategy: we prove a correctness lemma for each operator,
and finally combine them to prove correctness of the whole construction.

Following a fairly classical path, we begin by introducing the closure of φ, named Cl(φ), contain-
ing all subformulas of φ. The states of the automaton will be sets of formulas associated to a word
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position. To do so, however, we need to augment POTL’s alphabet with a few auxiliary operators
which are not needed to increase POTL’s expressiveness but are useful to specify the behavior of
its model checker. Such new operators are

— ζL , which forces the current position to be the first one of a chain body;
— ζR , which lets the computation go on only if the previous transition was a pop, and the

position associated with the current state is the right context of a chain;
— ζ� , which appears in a state iff the next transition will be a shift.
— Furthermore we will use χπ

F
, χπ

P
, where π is a PR, as a kind of “specialization” of the original

χ t
F

, χ t
P

: for instance, whereas (w, i ) |= χd
F
ψ iff there exists a position j > i such that χ (i, j ),

i � j or i � j, and (w, j ) |= ψ , we now need to treat separately the two cases i � j and i � j
so that the two PRs now replace the superscript ‘d’. χ�P and χ�F have already been formally
defined and used in the expansion laws for hierarchical until operators (cf. Section 3.1) as
short-notations for more involved formulas that required explicitly the appropriate PR; their
� counterparts are defined analogously.

The precise semantics of the above new operators will be formalized when they will be used.
Thus, we obtain Cl(φ) through a fixpoint computation. It is the smallest set satisfying the fol-

lowing constraints:

— φ ∈ Cl(φ),
—AP ⊆ Cl(φ),
— ifψ ∈ Cl(φ) andψ � ¬θ , then ¬ψ ∈ Cl(φ) (we identify ¬¬ψ withψ );
— if ¬ψ ∈ Cl(φ), thenψ ∈ Cl(φ);
— if any of the unary temporal operators (e.g., �d , χd

F
, χd

P
, �d

H
, . . . ) is in Cl(φ), and ψ is its

operand, thenψ ∈ Cl(φ);
— if any of the binary operators (e.g., ∧, ∨, Ud

χ , Sd
χ , Ud

H
, . . . ) is in Cl(φ), andψ and θ are its

operands, thenψ ,θ ∈ Cl(φ);
— if χd

F
ψ ∈ Cl(φ), then ζL, χ

�

F ψ , χ
�
F ψ ∈ Cl(φ);

— if χu
F
ψ ∈ Cl(φ), then ζL, χ

�

F ψ , χ
�
F ψ ∈ Cl(φ);

— if χd
P
ψ ∈ Cl(φ), then ζR , χ

�

P ψ , χ
�
P ψ ∈ Cl(φ);

— if χu
P
ψ ∈ Cl(φ), then ζR , ζ�, χ

�

P ψ , χ
�
P ψ ∈ Cl(φ);

— if �u
H
ψ ∈ Cl(φ), then ζR ∈ Cl(φ);

— if �u
H
ψ ∈ Cl(φ), then ζL, ζR ∈ Cl(φ);

— if θ ∈ Cl(φ) such that θ = �d
H
ψ or θ = �d

H
ψ , then ζL, ζ�, (�d ψ∨χ�P ψ ), (�d θ∨χ�P θ ) ∈ Cl(φ);

— if any until or since operator is in Cl(φ), then all operators required by its expansion law (cf.
Section 3.1) are in Cl(φ). E.g., ifψU t θ ∈ Cl(φ) for t ∈ {d,u}, then �t (ψU t θ ), χ t

F
(ψU t θ ) ∈

Cl(φ).

Next, we define the set Atoms(φ), which contains all consistent subsets of Cl(φ), i.e., all Φ ⊆ Cl(φ)
that satisfy a set of Atomic consistency Constraints A C . What constraints are in A C depends on
which operators appear in Cl(φ). In the following, we introduce constraints that appear in A C due
to each operator’s presence in Cl(φ) separately. We start by defining those related to propositional
operators: for any Φ ∈ Atoms(φ),

(a) ψ ∈ Φ iff ¬ψ � Φ for everyψ ∈ Cl(φ);
(b) ψ ∧ θ ∈ Φ, iffψ ∈ Φ and θ ∈ Φ;
(c) ψ ∨ θ ∈ Φ, iffψ ∈ Φ or θ ∈ Φ, or both.

While (a) is always present in A C , (b) and (c) only appear if any formula involving respectively
∧ or ∨ is in Cl(φ).
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Aφ works in a way similar to the classic LTL tableau [79]: each state contains an atom with for-
mulas that hold in the next time instant, and transitions read the set of APs in that atom, guessing
the next one. Whereas LTL and FSAs are strictly sequential, POTL is devised to express properties
of tree-shaped structures and OPAs are pushdown machines. Furthermore OPAs, in general, are
not real-time machines—unlike VPAs—, i.e., they also have pop transitions which do not read any
character. Thus,Aφ ’s states are obtained by pairing atoms with another subset of Cl(φ) which aims
at keeping track of what will happen (respectively happened) at the end (respectively beginning)
of a chain. Formally, such a set of pending formulas is defined as

Clpend (φ) =
{
θ ∈ Cl(φ) | θ ∈ {ζL, ζR , ζ�, χ

π
F ψ , χπ

P ψ ,�t
H ψ ,�t

H ψ } for some

π ∈ {�, �,�}, t ∈ {d,u} andψ ∈ Cl(φ)
}
.

The states of Aφ are the set Q = Atoms(φ) × P (Clpend (φ)), and its elements, which we denote
with Greek capital letters, are of the form Φ = (Φc ,Φp ), where Φc , called the current part of Φ, is
the set of formulas that hold in the next position that Aφ is going to read, and Φp , or the pending

part of Φ, is a set of temporal obligations. Φp keeps track of temporal operators such as χ t
F
ψ that,

once guessed in a position i that is the left context of a chain, is satisfied byψ holding in position
j that is in the χ relation with i . States with pending formulas can be pushed to the stack, so that
when they are popped the OPA “remembers” that some temporal operator must be satisfied.

The initial set I contains states of the form (Φc ,Φp ), with φ ∈ Φc , and the final set F contains
states of the form (Ψc ,Ψp ), s.t. Ψc ∩AP = {#} and Ψc contains no future operators. Φp and Ψp may
contain only operators explicitly allowed in the following.

In the following, we use a notation that relates states to word positions. With this notation, Φ(i )
is a “look-ahead” for ai , which is the next symbol to be read. State Φ(i ) is the one that guesses,
in its Φc component, the formulas holding in position i , and is produced directly by the push or
shift move reading position i − 1 (in particular, the initial state is Φ(1)). Since OPA’s pop moves
do not read any character, we introduce the notation Φд (i ) to distinguish the state in which the
automaton is ready to read the symbol in position i . Thus, whenAφ reads the symbol in position
i−1, it goes from configuration 〈ai−1aix ,Φ

д (i−1),γ 〉 to 〈aix ,Φ(i ),γ ′〉, where ai is the input symbol
at position i; in its pending part, Φ(i ) may contain further guesses on formulas holding beyond
position i due to chain-next operators. Precisely, if smb (γ ′)�ai or smb (γ ′)�ai , then the next move
is respectively a push or a shift, and Φд (i ) = Φ(i ), bringingAφ to 〈x ,Φ(i + 1),γ ′′〉. If smb (γ ′) � ai ,
a pop transition occurs before reading the symbol in position i , and Aφ checks previous guesses
and makes new ones about formulas holding in positions beyond i: the next state is called Φ′(i ),
and if more pops occur, we have similarly Φ′′(i ), Φ′′′(i ), and so on.

The state resulting from the last pop before ai is read by a shift or a push is Φд (i ). For instance,
if γ ′ = [aj′,Φ

д (j )][ak ′,Φ
д (k )]γ ′′ and aj′,ak ′ � ai for some k ≤ k ′ < j ≤ j ′ < i ,5 two pop moves

occur and i is read by a push, causing the following sequence of transitions:

ρ = 〈aix ,Φ(i ), [aj′,Φ
д (j )][ak ′,Φ

д (k )]γ ′′〉  〈aix ,Φ
′(i ), [ak ′,Φ

д (k )]γ ′′〉  〈aix ,Φ
′′(i ),γ ′′〉

 〈x ,Φ(i + 1), [ai ,Φ
′′(i )]γ ′′〉.

At this point, Φ′′(i ) is also referred to as Φд (i ), and the last push transition occurs.
Temporal obligations are enforced by the transition relation δ . As well as Atoms(φ) is the set

of all subsets of Cl(φ) that satisfy the consistency constraints in A C , the transition relation δ is
the set of all transitions that satisfy a set of δ -rules, DR. We will introduce DR in parallel with

5Recall that the input symbol contained in stack elements can be changed by shift moves, leaving the state unchanged: this

is why we need two more positions j′ and k ′ besides j and k .
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Fig. 8. Example run of the automaton for �d �u
exc (left), and ST (top right) and flat representation of the

input word (bottom right).

A C gradually for each operator: δpush and δshift are the largest subsets ofQ ×P (AP )×Q satisfying
all rules in DR, and δpop is the largest subset of Q × Q × Q satisfying all rules in DR. Given a
formula ψ , we denote as DR (ψ ) the set of DR rules that are defined as a consequence of ψ ∈
Cl(φ). First, we introduce two DR rules that are always present and are not bound to a particular
operator.

Each state of Aφ guesses the APs that will be read next. So, DR always contains the rule that

(1) for any (Φ,a,Ψ) ∈ δpush/shift , with Φ,Ψ ∈ Q and a ∈ P (AP ), we have Φc ∩AP = a

(by δpush/shift we mean δpush ∪ δshift , and by Φc ∩ AP the set of atomic propositions in Φc ). Pop

moves, on the other hand, do not read input symbols, andAφ remains at the same position when
performing them: DR contains the rule

(2) for any (Φ,Θ,Ψ) ∈ δpop it must be Φc = Ψc .

Referring to the above sequence ρ, thanks to DR rule (1), Φc (i ) ∩ AP = ai , and due to rule (2)
we have Φc (i ) = Φ′c (i ) = Φ′′c (i ) —i.e., only pending parts can change during pop moves—.

Next, we examine all POTL’s operators and derive DR rules therefrom with an informal ex-
planation of their rationale. Then, in Section 4.2, we provide a formal correctness statement and
proof thereof. Since the involved POTL operators are more complex than those of classic LTL —
and of NWTL too— we structure such a correctness proof into a sequence of lemmas, one for each
operator, followed by a global proof based on a natural induction on formula structure.

4.1.1 Next and Back Operators. If �d ψ ∈ Cl(φ) for some ψ , DR (�d ψ ) contains a rule impos-
ing that:

(3) for all (Φ,a,Ψ) ∈ δpush/shift , it must be that �d ψ ∈ Φc iff (ψ ∈ Ψc and either a � b or a � b,
where b = Ψc ∩AP ).

For �d ψ , the rule is symmetric, i.e., the double implication is �d ψ ∈ Ψc iff (ψ ∈ Φc and a � b or
a � b). For the upward counterparts, it suffices to replace � with � in the previous rules.

Not surprisingly, the above rules involve transitions that read an input symbol in a similar way
as for LTL and FSAs. It also immediately appears, however, that there are conditions on PRs to
consider, with an impact on the way the ST associated to any sentence is visited. If t = d , when a
push or a shift transition reads a position where �d ψ is guessed to hold, it only leads to a state
containing APs such that the read label is in the � or � PR with them. This means the OPA guesses
that the next transition will be, again, a push or a shift, and will read a symbol whereψ holds.

Things get slightly more complicated if t = u because pop transitions may occur, so we illustrate
this case with an example. Figure 8 shows an accepting run of Aφ , built on (Σcall,Mcall) with

φ = �d �u
exc, on one of its models (but others exist). Aφ starts in a state Φд (1) with �d �u

exc

in its current part, which is required for all initial states. A push move reads the first position,
guessing that the next one will be a call, and state Φд (2) is reached. We have �d �u

exc ∈ Φ
д
c (1)
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and �u
exc ∈ Φ

д
c (2), and also call � call, so rule (3) is satisfied. The next position is again read by

a push, but this time the next state is Φ(3), which guesses the next position being a exc. call� exc

satisfies the u version of rule (3), but it means that the next move will be a pop. Indeed, the OPA
pops all symbols in the stack, but because of DR rule (2), the current part of the state does not
change, so the guess that exc will hold in the third position is preserved. Note that the pending
parts of states are always empty, because they are not needed for this operator. Also, notice the
д notation, which we use to distinguish states that are ready for a push or a shift move. States
Φ(1) and Φ(2) can be also denoted as Φд (1) and Φд (2) respectively, while Φд (3) = Φ′′(3) and
Φд (4) = Φ′(4).

4.1.2 Chain Next Operators. To model check chain next operators we use auxiliary operators
χπ

F
, with π ∈ {�, �,�}, that restrict their downward and upward counterparts to a single PR. Their

semantics can be defined as follows: given an OP word w and a position i , we have (w, i ) |= χπ
F
ψ

iff there exists a position j > i such that χ (i, j ) and i π j, and (w, j ) |= ψ . In particular, we have
χd

F
ψ ⇐⇒ χ�F ψ ∨ χ�F ψ and χu

F
ψ ⇐⇒ χ�F ψ ∨ χ�F ψ , which justify the A C constraints below.

If χd
F
ψ ∈ Cl(φ), A C contains the following constraint:

(d) for each Φ ∈ Q we have χd
F
ψ ∈ Φc iff (χ�F ψ ∈ Φc or χ�F ψ ∈ Φc ).

For χu
F
ψ ∈ Cl(φ), the constraint becomes

(e) for each Φ ∈ Q we have χu
F
ψ ∈ Φc iff (χ�F ψ ∈ Φc or χ�F ψ ∈ Φc ).

We also use the auxiliary symbol ζL to force the next position to be read to be the first one of a
chain body. If we let the current state of Aφ be Φ ∈ Q , then ζL ∈ Φp iff the upcoming transition
(i.e., the one reading the next position) is a push. This is accomplished by the following rules in
DR (ζL ):

(4) if (Φ,a,Ψ) ∈ δshift or (Φ,Θ,Ψ) ∈ δpop, for any Φ,Θ,Ψ and a, then ζL � Φp ;
(5) if (Φ,a,Ψ) ∈ δpush, then ζL ∈ Φp .

Moreover, for any initial state (Φc ,Φp ) ∈ I , we have ζL ∈ Φp iff # � Φc .
If χ�F ψ ∈ Cl(φ), its satisfaction is ensured by the following rules in DR (χ�F ψ ):

(6) Let (Φ,a,Ψ) ∈ δpush/shift : then χ�F ψ ∈ Φc iff χ�F ψ , ζL ∈ Ψp ;

(7) let (Φ,Θ,Ψ) ∈ δpop: then χ�F ψ � Φp and (χ�F ψ ∈ Θp iff χ�F ψ ∈ Ψp );

(8) let (Φ,a,Ψ) ∈ δshift : then χ�F ψ ∈ Φp iffψ ∈ Φc .

If χ�F ψ ∈ Cl(φ), then χ�F ψ is allowed in the pending part of initial states, and DR (χ�F ψ ) contains
the following rules:

(9) Let (Φ,a,Ψ) ∈ δpush/shift : then χ�F ψ ∈ Φc iff χ�F ψ , ζL ∈ Ψp ;
(10) let (Φ,Θ,Ψ) ∈ δpop: then χ�F ψ ∈ Θp iff (ζL ∈ Ψp and (either (a) χ�F ψ ∈ Ψp or (b)ψ ∈ Φc )).

The rules for χ�F ψ only differ inψ being enforced by a pop transition, triggered by the � relation
between the left and right contexts of the chain on whose left context χ�F ψ holds. Thus, if χ�F ψ ∈
Cl(φ), in DR (χ�F ψ ) we have:

(11) Let (Φ,a,Ψ) ∈ δpush/shift : then χ�F ψ ∈ Φc iff χ�F ψ , ζL ∈ Ψp ;
(12) let (Φ,Θ,Ψ) ∈ δpop : (χ�F ψ ∈ Θp iff χ�F ψ ∈ Ψp ) and (χ�F ψ ∈ Φp iffψ ∈ Φc );
(13) let (Φ,a,Ψ) ∈ δshift : then χ�F ψ � Φp .

We illustrate how the construction works for χ�F with the example of Figure 9, which shows

an accepting run of Aφ for φ = χd
F

ret. The OPA starts in state Φд (1), with χd
F

ret ∈ Φ
д
c (1), and

guesses that χd
F

will be fulfilled by χ�F , so χ�F ret ∈ Φ
д
c (1), and that the next move will be a push,
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Fig. 9. Example run of the automaton for χd
F

ret (left), and ST (top right) and flat representation of the input
word (bottom right).

so ζL ∈ Φ
д
p (1). call is read by a push move, resulting in state Φ2 (2). Again, the OPA guesses the

next move will be a push, so ζL ∈ Φ
д
p (2). By rule (6), we have χ�F ret ∈ Φ

д
p (2). The last guess is

immediately verified by the next push (step 2 and 3). Thus, the pending obligation for χ�F ret is
stored onto the stack in Φд (2). The OPA, then, reads exc with a shift, and pops the stack symbol
containing Φд (2) (step 4 and 5). By rule (7), the temporal obligation is resumed in the next state
Φ′(4), so χ�F ret ∈ Φ′p (4). Finally, ret is read by a shift which, by rule (8), may occur only if ret ∈
Φ′c (4). Rule (8) verifies the guess that χ�F ret holds in Φд (1), and fulfills the temporal obligation
contained in Φ′p (4), by preventing computations in which ret � Φ′c (4) from continuing. Had the

next transition been a pop (e.g., because there was no ret and call � #), the run would have been
blocked by rule (7), preventing the OPA from reaching an accepting state.

4.1.3 Chain Back Operators. Despite the structure of chains in OPLs being symmetric, the way
chain back operators work is quite different from chain next operators, because OPAs proceed
left-to-right. Hence, while the OPA has to guess the presence of a χ t

F
ψ becauseψ will hold in the

future, with χ t
P
ψ the argument ψ is found first, so the OPA must make sure the chain back will

hold in the future.
To model check the χd

P
ψ and χu

P
ψ operators, we employ the auxiliary operator χπ

P
ψ , with

π ∈ {�, �,�}. Given an OP word w and a position i in it, we have (w, i ) |= χπ
P
ψ iff there exists a

position j < i such that χ (j, i ) and j π i , and (w, j ) |= ψ . The A C constraints below rely on the
equivalences χd

P
ψ ⇐⇒ χ�P ψ ∨ χ�P ψ and χu

P
ψ ⇐⇒ χ�P ψ ∨ χ�P ψ .

If χd
P
ψ ∈ Cl(φ), A C contains the following constraint:

(f) for any Φ ∈ Q we have χd
P
ψ ∈ Φc iff (χ�P ψ ∈ Φc or χ�P ψ ∈ Φc ).

For χu
P
ψ ∈ Cl(φ), A C contains

(g) for any Φ ∈ Q we have χu
P
ψ ∈ Φc iff (χ�P ψ ∈ Φc or χ�P ψ ∈ Φc ).

We use symbol ζR , which is symmetric to ζL : it lets the computation go on only if the previous
transition was a pop, and the next position to be read is the right context of a chain. So, we define
the following DR (ζR ) rules:

(14) for any (Φ,a,Ψ) ∈ δpush/shift , we have ζR � Ψp ;
(15) for any (Φ,Θ,Ψ) ∈ δpop, we have ζR ∈ Ψp .

ζR is allowed in the pending part of final states.
If χ�P ψ ∈ Cl(φ), DR (χ�P ψ ) contains the following rules:

(16) Let (Φ,a,Ψ) ∈ δshift : then χ�P ψ ∈ Φc iff χ�P ψ , ζR ∈ Φp ;

(17) let (Φ,a,Ψ) ∈ δpush: then χ�P ψ � Φc ;

(18) let (Φ,Θ,Ψ) ∈ δpop: then χ�P ψ ∈ Ψp iff χ�P ψ ∈ Θp ;

(19) let (Φ,a,Ψ) ∈ δpush/shift : then χ�P ψ ∈ Ψp iffψ ∈ Φc .
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Fig. 10. Example run of the automaton for �d �d �u χd
P

call on the same word as in Figure 9.

The rules in DR (χ�P ψ ) if χ�P ψ ∈ Cl(φ) follow:

(20) Let (Φ,a,Ψ) ∈ δpush: then χ�P ψ ∈ Φc iff χ�P ψ , ζR ∈ Φp ;
(21) let (Φ,a,Ψ) ∈ δshift : then χ�P ψ � Φc ;
(22) let (Φ,Θ,Ψ) ∈ δpop: then χ�P ψ ∈ Ψp iff χ�P ψ ∈ Θp ;
(23) let (Φ,a,Ψ) ∈ δpush/shift : then χ�P ψ ∈ Ψp iffψ ∈ Φc .

Finally, for χ�P , we use symbol ζ� , which appears in a state iff the next transition will be a shift.
DR (ζ� ) contains:

(24) for any (Φ,a,Ψ) ∈ δpush and (Φ,Θ,Ψ) ∈ δpop, ζ� � Φp ;
(25) for any (Φ,a,Ψ) ∈ δshift , ζ� ∈ Φp .

χ�P ψ and ζ� are allowed in the pending part of final states.
If χ�P ψ ∈ Cl(φ), DR (χ�P ψ ) contains the rules below:

For any (Φ,a,Ψ) ∈ δpush/shift ,

(26) χ�P ψ � Ψp ;
(27) χ�P ψ ∈ Φc iff χ�P ψ , ζR ∈ Φp ;

for any (Φ,Θ,Ψ) ∈ δpop,

(28) if (ζL ∈ Ψp or ζ� ∈ Ψp ), then χ�P ψ ∈ Ψp iff χ�P ψ ∈ Φp ;

(29) if ζL, ζ� � Ψp , then χ�P ψ ∈ Ψp iff (either χ�P ψ ∨ �
d ψ ∈ Θc or χ�P ψ ∈ Φp ).

In Figure 10, we show how the construction works through an example run of Aφ built for

φ = �d �d �u χd
P

call on the same word as in Figure 9. Position 1 is read by a push move, and

since call ∈ Φд (1), according to DR rule (19), χ�P call is stored in the pending part of the next
state Φд (2). Here the OPA has just made two guesses: that position 1 is the left context of a chain,
and that in its right context χd

P
call will be fulfilled by χ�P call. The OPA then proceeds by reading

position 2 with a push that stores Φд (2) on the stack: the guess about χ�P call will be checked
when it is popped. Next, exc in position 3 is read by a shift move that updates the character in
the topmost stack symbol and, more importantly, guesses that χ�P call will hold in position 4. Due

to A C constraint (f), χd
P

call is also in Φc (4), fulfilling the DR rule for the �u operator. State

Φд (2) is then popped, and since χ�P call ∈ Φ
д
p (2), by rule (18) we have χ�P call ∈ Φ′p (4). By rule (15),

ζR ∈ Φ′p (4). Thus, Φ′(4) = Φд (4) contains all formulas needed for rule (16) to confirm the guess

that χ�P call holds in position 4. Note that rule (16) only holds for shift transitions, while rule (17)

forbids push moves with χ�P call in the current part of the starting state: this makes sure the two
chain contexts are in the � relation.

4.1.4 Summary Until and Since. The construction for these operators relies on A C constraints
based on their expansion laws (cf. Section 3.1). The constraints for until follow, and those for since
are symmetric.
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(h) For any Φ ∈ Q , we haveψ U t θ ∈ Φc , with t ∈ {d,u} being a direction, iff either:
— θ ∈ Φc , or
— �t (ψ U t θ ),ψ ∈ Φc , or
— χ t

F
(ψ U t θ ),ψ ∈ Φc .

4.1.5 Hierarchical Next and Back Operators. If �u
H
ψ ∈ Cl(φ) for some ψ , DR (�u

H
ψ ) contains

the following rules:

for any (Φ,a,Ψ) ∈ δpush,

(30) if �u
H
ψ ∈ Φc , then ζR ∈ Φp ;

(31) �u
H
ψ ∈ Φp iff (ψ ∈ Φc and ζR ∈ Φp );

for any (Φ,Θ,Ψ) ∈ δpop,

(32) if ζR ∈ Θp , then �u
H
ψ ∈ Θc iff �u

H
ψ ∈ Ψp ;

(33) �u
H
ψ � Φp ;

for any (Φ,a,Ψ) ∈ δshift :

(34) �u
H
ψ � Φp and �u

H
ψ � Φc .

If �u
H
ψ ∈ Cl(φ) for someψ , DR (�u

H
ψ ) contains the following rules:

(35) for any (Φ,a,Ψ) ∈ δpush, if �u
H
ψ ∈ Φc , then ζR , ζL ∈ Φp ;

(36) for any (Φ,Θ,Ψ) ∈ δpop, if ζL ∈ Ψp , then �u
H
ψ ∈ Ψc iffψ ∈ Θc and ζR ∈ Θp ;

(37) for any (Φ,a,Ψ) ∈ δshift , �u
H
ψ � Φc .

If �d
H
ψ ∈ Cl(φ) for someψ , DR (�d

H
ψ ) contains the following rules:

for any (Φ,Θ,Ψ) ∈ δpop,

(38) if ζL, ζ� � Ψp , then (�d ψ ∨ χ�P ψ ) ∈ Θc iff �d
H
ψ ∈ Ψp ;

(39) if ζL, ζ� � Ψp , then �d
H
ψ ∈ Φp iff (�d (�d

H
ψ ) ∨ χ�P (�d

H
ψ )) ∈ Θc ;

(40) if (�d (�d
H
ψ ) ∨ χ�P (�d

H
ψ )) ∈ Θc , then ζ� � Ψp ;

for any (Φ,a,Ψ) ∈ δpush/shift ,

(41) if �d
H
ψ ∈ Φc , then ζL ∈ Ψp ;

(42) �d
H
ψ � Ψp .

If �d
H
ψ ∈ Cl(φ) for someψ , DR (�d

H
ψ ) contains the following rules:

for any (Φ,Θ,Ψ) ∈ δpop,

(43) if ζL, ζ� � Ψp , then (�d ψ ∨ χ�P ψ ) ∈ Θc iff �d
H
ψ ∈ Φp ;

(44) if ζL � Ψp , then �d
H
ψ ∈ Ψp iff (�d (�d

H
ψ ) ∨ χ�P (�d

H
ψ )) ∈ Θc ;

(45) if �d
H
ψ ∈ Φp , then ζL, ζ� � Ψp ;

for any (Φ,a,Ψ) ∈ δpush/shift ,

(46) if �d
H
ψ ∈ Φc , then ζL ∈ Ψp ;

(47) �d
H
ψ � Φp .

We illustrate how the construction of the �u
H

works through the example of Figure 11, which

shows an accepting run of the automaton built for formula �d �u �u
H

call. The computation goes
on normally until, in step 3, the second stm is reached. Thanks to the two nested next operators,�u

H
call is forced to hold here, so �u

H
call ∈ Φc (3). A pop transition then brings the automaton to

Φ′(3): none of rules (32) and (33) apply but, since ζR ∈ Φ′p (3), rule (30) is satisfied and a push move
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Fig. 11. Example run of the automaton for �d �u �u
H

call (top left), ST (top right) and flat representation
(bottom) of the input word.

reads stm. The next input symbol is a call, so a pop move is triggered. Since the popped symbol
contains Φ′(3) and ζR ∈ Φ′p (3), rule (32) applies. The next state is thus Φ′(4) with �u

H
call ∈ Φ′p (4),

because �u
H

call ∈ Φ′c (3). State Φ′(4) satisfies rule (31) because call ∈ Φ′c (4) and, due to the previous
pop move, ζR ∈ Φ′p (4). A push move can therefore read call, and the computation goes on normally
until acceptance.

4.1.6 Hierarchical Until and Since Operators. The construction for this kind of until and since
operators also relies on A C constraints based on expansion laws (cf. Section 3.1). Here we only
report the constraints for Uu

H
, as the others are symmetric.

(i) For any Φ ∈ Q , we haveψ Uu
H
θ ∈ Φc iff either:

— θ , χ�P � ∈ Φc or
—ψ ,�u

H
(ψ Uu

H
θ ) ∈ Φc .

4.2 Correctness Proof

We prove that Aφ accepts all and only words in which φ holds in position 1. The strategy we
follow is to prove by induction on the syntactic structure of φ the claim that the computation of
Aφ in each accepted word w is such that, for all positions i , we have (w, i ) |= ψ iff ψ ∈ Φ

д
c (i ) for

all ψ ∈ Cl(φ). Since φ is included in all of its initial states, Aφ only accepts words read by a run

where φ ∈ Φ
д
c (1), and consequently such that (w, 1) |= φ.

The overall induction argument is given in Theorem 4.4; before, the inductive step is proved
separately for each operator. In each of the following lemmas, given a sub-formula θ of φ, we start
from the inductive assumption that for each sub-formulaψ of θ except θ itself we have (w, i ) |= ψ
iffψ ∈ Φ

д
c (i ) for all positions i inAφ ’s accepting computations. Then, we prove the inductive claim

stating that for a computation of Aφ to be accepting, the same must hold for θ , i.e., (w, i ) |= θ iff

θ ∈ Φ
д
c (i ) for all i . We also prove that each operator does not interfere with rules regarding other

formulas, so that words that satisfy other formulas are accepted if they also satisfy the one at hand.
To do this, we considerAφ−θ , an OPA built asAφ but using DR \DR (θ ) for δ , i.e., without rules
related to θ . We show that if a computation is accepting forAφ−θ and satisfies the rules for θ , then
it is accepting for Aφ too.

Before going on, we clarify that the set of sub-formulas subf (φ) of a formula φ is the smallest
set such that:

— φ ∈ subf (φ);
— if any of the unary operators (e.g., ¬, �d , χd

F
, χd

P
, . . . ) is in subf (φ), andψ is its operand, then

ψ ∈ subf (φ);
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— if any of the binary operators (e.g., ∧, ∨, Ud
χ , Sd

χ , . . . ) is in subf (φ), and ψ and θ are its

operands, thenψ ,θ ∈ subf (φ).

The set of strict sub-formulas of φ is ssubf (φ) = subf (φ) \ {φ}.

4.2.1 Lemmas about Next Operators. Lemma 4.1 proves the correctness of the rules given in
Section 4.1.1 for the next operator, the proof for back being symmetric. We examine in detail the
behavior ofAφ when reading input symbols; since between two push or shift moves an unbounded
number of pop moves may occur, we consider the scanning of two consecutive characters.

Lemma 4.1. Given a finite set of atomic propositions AP , an OP alphabet (P (AP ),MAP ) and a

formula �t ψ with t ∈ {d,u}, let Aφ be the OPA built for a formula φ such that �t ψ ∈ Cl(φ); and

let Aφ−�t ψ be the OPA built as Aφ but using DR \DR (�t ψ ) for δ .

Inductive assumption: in all accepting computations ofAφ for each position i in the input wordw

and for each sub-formulaψ ′ ∈ ssubf (�t ψ ) we have (w, i ) |= ψ ′ iffψ ′ ∈ Φ
д
c (i ).

Inductive claim I : [I1] A computation ρ of Aφ is accepting if and only if [I2] ρ is accepting for

Aφ−�t ψ and for each position i in the input word w we have (w, i ) |= �t ψ iff �t ψ ∈ Φ
д
c (i ).

Proof. To prove the inductive claim, we first prove an auxiliary claim based on the following
assertions:

— let [A1] be: (w, i ) |= �t ψ ;
— let [A2] be: all accepting computations ofAφ bring it from configuration 〈aiy,Φ

д (i ),γ 〉with�t ψ ∈ Φ
д
c (i ) to a new configuration 〈y,Φд (i + 1),γ ′〉.

We prove that for any wordw = #xaiy# with ai ∈ P (AP ) and position i = |x |+1 inw ,A1 ⇐⇒ A2.
[A1 ⇒ A2]Aφ makes the initial guess that �t ψ holds in i , so when it reaches configuration 〈aiy,

Φд (i ),γ 〉, we have �t ψ ∈ Φ
д
c (i ). Later we show that a computation cannot be accepting without

this guess.
Then, a transition reads symbol a in position i and Aφ reaches a configuration 〈y,Φ(i + 1),

[ai ,Φ
д (j )] . . .⊥〉, with j = i if the transition was a push, and j < i if it was a shift. In doing so, by

rule (1) it guesses the first character of y, which we call ai+1, so Φc (i + 1)∩AP = ai+1. This guess is
possible because, if �t ψ holds in i , the PR between ai and ai+1 is the right one according to rule (3).
Since �t ψ holds in i ,ψ , which is trivially a sub-formula of �t ψ , holds in i + 1 and therefore is in
Φc (i + 1) by the inductive assumption. This satisfies rule (3). Also, note that according to the same
rule there is no transition that goes from i with �t ψ � Φ

д
c (i ) to i + 1 with ψ ∈ Φc (i + 1), so runs

that do not make the initial guess cannot be accepting.
Now, let t = d : then we have either ai � ai+1 or ai � ai+1. The automaton is now ready to read

ai+1 with, respectively, a push or a shift move, because ai is on top of the stack.
Suppose, instead, t = u: then either ai � ai+1 or ai � ai+1. In the former case, ai+1 can be read

directly by a shift move. In the latter, the topmost stack symbol is popped, and a sequence of pop
transitions brings the automaton to configuration 〈y,Φд (i + 1),γ ′〉 where the topmost symbol in
γ ′ is [ak ,Φ

д (j )] such that ak �ai+1 or ak �ai+1, for some positions j ≤ k < i . However, DR rule (2)
imposes that the current part of the automaton’s state does not change during pop moves. Thus,
Φ

д
c (i + 1) = Φc (i + 1), including ψ ∈ Φ

д
c (i + 1). Then, the automaton is ready to proceed with a

push or shift transition reading ai+1.
[A2 ⇒ A1]. Suppose that an accepting computation contains configuration 〈aiy,Φ

д (i ),γ 〉 with�t ψ ∈ Φ
д
c (i ). After reading i , it reaches a configuration 〈y,Φ(i + 1), [ai ,Φ(j )] . . .⊥〉, with j = i

or j < i depending on the move that read i . By rule (3), we must have ψ ∈ Φc (i + 1), and the PR
between a and Φc (i +1)∩AP must be the right one according to t . Atom Φc (i +1) contains a guess
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of ai+1, and rule (2) enforces it even if pop moves occur before ai+1 is read. Thus, sinceψ ∈ Cl(ψ ),
by hypothesisψ ∈ Φ

д
c (i + 1) implies (w, i + 1) |= ψ and, thus, �t ψ holds in i .

We can now prove the inductive claim. The [I1 ⇒ I2] part follows from the auxiliary claim,
together with the fact that �t ψ is a future operator, so Φ(i ) cannot be final if �t ψ ∈ Φc (i ), and
i is followed by another position in all accepting computations (i.e., |y | ≥ 1). Moreover, Aφ ’s
transition relation is a subset of that ofAφ−�t ψ because the latter has fewer rules than the former,
so if a word is accepted by Aφ , then Aφ−�t ψ must be able to perform the same accepting run.

For the [I2 ⇒ I1] side, note that according to the proof above Φ(i+1) does not necessarily contain�t ψ (unless �t ψ holds in i + 1) so DR rule (3) cannot prevent it from reaching an accepting
configuration. Thus, if a computation is accepting for Aφ−�t ψ and satisfies (w, i ) |= �t ψ iff�t ψ ∈ Φc (i ), it can go on past i + 1 and be accepting. �

We now prove the correctness of rules given in Section 4.1.2 for the χ�F operator in Lemma 4.2.
The lemmas for the χ�F and chain back operators follow a very similar structure, so we postpone
them to Appendix A.

In the following, we denote as first(w ) the first position of a wordw ; we use initial letters of the
alphabet a,b, c, . . . to denote single input symbols, andu,v to denote sub-words. We use Figure 12,
which represents the generic structure of any one-to-many composed chain. In the left tree, the
contexts of the outermost chain (a and d) are in the � PR, and in the right one they are in the �
PR (cf. Property 4 of the χ relation). We use the left tree when proving case χ�F ; the χ�F case can be

proved identically to χ�F by referring to the right tree and is therefore omitted. Both sides, instead,
are used for χ�F , but note that the � PR does not hold between a and d , but rather between a and
all bi ’s. When referring to Figure 12, we denote by ic the word position of any input symbol c , and
by iv the position of first(v ) for any sub-word v .

Lemma 4.2 (χ�F Operator). Given a finite set of atomic propositions AP , an OP alphabet (P (AP ),
MAP ) and a formula χ�F ψ , let Aφ be the OPA built for a formula φ such that χ�F ψ ∈ Cl(φ); and let

Aφ−χ �
F

ψ be the OPA built as Aφ but using DR \DR (χ�F ψ ) for δ .

Inductive assumption: in all accepting computations ofAφ for each position i in the input wordw

and for each sub-formulaψ ′ ∈ ssubf (χ�F ψ ) we have (w, i ) |= ψ ′ iffψ ′ ∈ Φ
д
c (i ).

Inductive claim I : [I1] A computation ρ of Aφ is accepting if and only if [I2] ρ is accepting for

Aφ−χ �
F

ψ and for each position i in the input word w we have (w, i ) |= χ�F ψ iff χ�F ψ ∈ Φ
д
c (i ).

Proof. We first prove two auxiliary claims, built on the following assertions:

— Let [A1] be: (w, i ) |= χ�F ψ ;
— let [A2] be: all accepting computations of Aφ bring it from a configuration 〈yz,Φд (i ),αγ 〉

with χ�F ψ ∈ Φ
д
c (i ) to a configuration 〈z,Φд (iz ),α ′γ 〉 such that χ�F ψ � Φ

д
p (iz ), |α | = 1 and

|α ′ | = 1 if first(y) is read by a shift move, |α ′ | = 2 if it is read by a push move.

We prove that for any word w = #xyz# and positions i = |x | + 1, iz = |xy | + 1 in w , A1 ⇐⇒ A2.
[A1 ⇒ A2]. Suppose χ�F ψ holds in position i , labeled with terminal symbol a. Then, i is the left

context of a chain with right context d and a�d , sow has the form of Figure 12 (left), possibly with
n = 0 (cf. the caption for notation). In all accepting computations, the OPA reaches configuration
〈a . . . z,Φд (i ), [f ,Φд (k )]γ 〉, where k < i and α = [f ,Φд (k )], and guesses that χ�F ψ holds in i , so

χ�F ψ ∈ Φ
д
c (i ). We show later in the proof that all accepting computations must make this guess. a

is read by either a push or a shift transition, leading the OPA to configuration 〈c0
0 . . . z,Φ(ic0

0
), β〉,

with either β = [a,Φд (i )][f ,Φд (k )]γ or β = [a,Φд (k )]γ , respectively. Moreover, χ�F ψ ∈ Φp (ic0
0
)

and ζL ∈ Φp (ic0
0
) due to rule (6). Since χ�F ψ holds in i , a is the left context of a chain, so the next
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Fig. 12. The two possible STs of a generic OP word w = xyz (top), and its flat representation with chains
(bottom). Wavy lines are placeholders for frontiers of subtrees or parts thereof. We have either a � d (top
left), or a � d (top right). In both trees, a � bk for 1 ≤ k ≤ n, and the corresponding word positions are in
the chain relation. For 1 ≤ k ≤ n, uk is the word generated by the right part of the rhs whose first terminal

is bk . So, either bk [uk ]bk+1 , or uk is of the form vk
0 c

k
0v

k
1 c

k
1 . . . c

k
mk

vk
mk+1, where ck

p � ck
p+1 for 0 ≤ p < mk ,

bk � ck
0 , and respectively ck

mk
� bk+1 and cn

mn
� d (cf. Figure 13). Moreover, for each 0 ≤ p < mk , either

vk
p+1 = ε or ck

p [vk
p+1]

ck
p+1 ; either vk

0 = ε or bk [vk
0 ]ck

0 , and either vk
mk+1 = ε or

ck
mk [vk

mk+1]bk+1 (respectively

cn
mn [vn

mn+1]d ). u0 has this latter form, except v0
0 = ε and a � c0

0 . In the bottom representation, the πk s are

placeholders for precedence relations, that depend on the surrounding characters. Also, chains that may or
may not exist depending on the form of each uk are not shown by edges (e.g., between bn and d).

transition is a push, satisfying rule (5), and Φ(ic0
0
) = Φд (ic0

0
). Any accepting computation must go

through the support for this chain. The next configuration is 〈v0
1 . . . z,Φ(iv0

1
), [c0

0,Φ
д (ic0

0
)]β〉, with

χ�F ψ ∈ Φ
д
p (ic0

0
). Then, the computation goes on normally. Note that, when reading an inner chain

body such as v0
1 , the automaton does not touch the stack symbol containing Φд (ic0

0
), and other

symbols in the body of the same simple chain, i.e., c0
1, c

0
2 . . . , are read with shift moves that update

the topmost stack symbol with the new terminal, leaving state Φд (ic0
0
) untouched.
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Fig. 13. The structure of uk in the word of Figure 12.

If a is the left context of more than one chain (i.e., n > 0 in the figure), the OPA then reaches
configuration 〈b1 . . . z,Φ(ib1

), [c0
m0
,Φд (ic0

0
)]β〉. Since c0

m0
�b1, the next transition is a pop. We have

χ�F ψ ∈ Φ
д
p (ic0

0
), so by rule (7), the automaton reaches configuration 〈b1 . . . z,Φ

′(ib1
), β〉with χ�F ψ ∈

Φ′p (ib1
). Then, since a is contained in the topmost stack symbol and a�b1, the next move is a push,

leading to 〈v1
0 . . . z,Φ(iv1

0
), [b1,Φ

′
p (ib1

)]β〉. Notice how χ�F ψ is again stored as a pending obligation

in the topmost stack symbol. The OPA run goes on in the same way for each terminalbp , 1 ≤ p ≤ n,

until the automaton reaches configuration 〈d . . . z,Φ(j ), [cn
mn
,Φд (ibn

)]β〉 with χ�F ψ ∈ Φ
д
p (ibn

). If a
is the left context of only one chain, this is the configuration reached after reading the body of such
a chain, with n = 0. Since cn

mn
� d , a pop transition leads to 〈d . . . z,Φ′(j ), β〉, with χ�F ψ ∈ Φ′p (j ),

by rule (7) (recall j is the position of d). Note that there exists a computation in which χ�F ψ �
Φp (j ), because no other rule prevents it, so rule (7) applies. Then, if χ�F ψ holds in i , since a is the
terminal in the topmost stack symbol, we must have a � d . So d is read by a shift move, leading
to 〈z,Φ(iz ),α ′γ 〉 with α ′ = [d,Φд (i )][f ,Φд (k )] or α ′ = [d,Φд (k )], depending on which kind of
move previously read a. Since χ�F ψ holds in i , ψ holds in j, and ψ ∈ Φ′dc , because we assume
the correctness of the construction for all other operators. This satisfies rule (8), and verifies the
initial guess that χ�F ψ holds in i . By rule (8), any computation in which ψ holds in j must have

χ�F ψ ∈ Φ′p (j ), which is only the case if the OPA makes such initial guess. Finally, there exists a

computation in which χ�F ψ � Φp (iz ), satisfying A2. Note that all computations of this form may
then proceed normally until acceptance, if they are not blocked by rules other than 6–8.

[A2 ⇒ A1]. Suppose that an accepting computation reaches configuration 〈a . . . z,Φд (i ),
[f ,Φд (k )]γ 〉, with k < i , χ�F ψ ∈ Φ

д
c (i ), α = [f ,Φд (k )], and f � a (the case f � a is analo-

gous). a is read by a push move in this case, which leads the OPA to configuration 〈c0
0 . . . z,Φ(ic0

0
),

[a,Φд (i )][f ,Φд (k )]γ 〉, with χ�F ψ , ζL ∈ Φp (ic0
0
). Since ζL ∈ Φp (ic0

0
), the next transition must be

a push, so a � c0
0, a is the left context of a chain and w has one of the structures of Figure 12.

The push move brings the OPA to configuration 〈v0
0 . . . z,Φ(iv0

0
), [c0

0,Φ(ic0
0
)][a,Φд (i )][f ,Φд (k )]γ 〉.

Notice that the stack size is now |γ | + 3. To fulfill A2, the automaton must eventually reach a
configuration in which the stack size is |γ | + 2. This can be achieved if [c0

0,Φ(ic0
0
)] is popped, so
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α ′ = [a,Φд (i )][f ,Φд (k )]. In a generic word such as the one of Figure 12, this happens only before
reading bp , 1 ≤ i ≤ n, or d .

In both cases, let [ck
mk
,Φд (ibk

)] be the popped stack symbol. We have χ�F ψ ∈ Φ
д
p (ibk

). Let Φ′ be

the destination state of the pop move: by rule (7), χ�F ψ ∈ Φ′p , so Φ′ is not Φд (iz ) from claim A2. If

the next move is a push (such as when reading any bp , 1 ≤ p ≤ n), the stack length increases again,
which also does not satisfy the thesis. If the next move is a pop, rule (7) blocks the computation.
So, the next move must be a shift, updating symbol [a,Φд (i )] to [d,Φд (i )], where d is the just-read
terminal symbol. This means the OPA reached the right context of the chain whose left context is
i (i.e., a), and the two positions are in the � relation. By rule (8), ψ is part of the starting state of
this move, soψ holds in this position, satisfying χ�F ψ in i .

[I1 ⇒ I2] follows directly from A1 ⇒ A2 and Aφ−χ �
F

ψ ’s DR rules being a strict subset of Aφ ’s.

[I2 ⇒ I1] again follows from A2 ⇒ A1, and the fact that Φд (iz ) may not contain χ�F ψ , nor states
in α ′, so rules (6)–(8) may not prevent the computation from reaching a final state. �

We now prove the correctness of the construction for the �u
H

operator; we omit the proofs for
the other hierarchical next and back operators as they are very similar.

Lemma 4.3 (�u
H

Operator). Given a finite set of atomic propositionsAP , an OP alphabet (P (AP ),
MAP ) and a formula �u

H
ψ , letAφ be the OPA built for a formula φ such that �u

H
ψ ∈ Cl(φ); and let

Aφ−�u
H

ψ be the OPA built as Aφ but using DR \DR (�u
H
ψ ) for δ .

Inductive assumption: in all accepting computations ofAφ for each position i in the input wordw

and for each sub-formulaψ ′ ∈ ssubf (�u
H
ψ ) we have (w, i ) |= ψ ′ iffψ ′ ∈ Φ

д
c (i ).

Inductive claim I : [I1] A computation ρ of Aφ is accepting if and only if [I2] ρ is accepting for

Aφ−�u
H

ψ and for each position i in the input word w we have (w, i ) |= �u
H
ψ iff �u

H
ψ ∈ Φ

д
c (i ).

Proof. We first prove two auxiliary claims, built on the following assertions:

— Let [A1] be: (w, i ′) |= �u
H
ψ ;

— let [A2] be: all accepting computations of Aφ bring it from a configuration 〈yz,Φд (i ′),γ 〉
with �u

H
ψ ∈ Φ

д
c (i ′) to a configuration 〈z,Φд (iz ),αγ 〉 such that �u

H
ψ � Φ

д
p (iz ) and |α | = 1.

We prove that for any word w = #xyz# and positions i = |x | + 1, iz = |xy | + 1 in w , A1 ⇐⇒ A2.
[A1 =⇒ A2]. Suppose �u

H
ψ holds in position i ′. Then, by the semantics of �u

H
there exists a

position i such that χ (i, i ′) and i � i ′. By Property 4 of the χ relation, w has the form of Figure 12
with n ≥ 2, and i ′ = ibk

for some 1 ≤ k ≤ n−1. Also,ψ holds in ibk+1
. In all accepting computations,

the OPA reaches configuration 〈bk . . . z,Φ
д (ibk

), [a,Φд (k )]γ ′〉 where k ≤ i and γ = [a,Φд (k )]γ ′,
and guesses that �u

H
ψ holds in ibk

, so �u
H
ψ ∈ Φ

д
c (ibk

). Previously, if k ≥ 2 the OPA must have
read bk−1 and uk−1, or u0 if k = 1. Both bk−1uk−1 and u0 end with a position in the � PR with bk ,
which triggers a pop move, and therefore ζR ∈ Φ

д
p (ibk

), so rule (30) is satisfied. The OPA then reads

bk with a push move, leading to configuration 〈vk
0 . . . z,Φ(ivk

0
), [bk ,Φ

д (ibk
)]γ 〉.

The computation then goes on normally by reading the rest of uk , until reaching configuration
〈bk+1 . . . z,Φ(ibk+1

), [ck
mk
,Φд (ibk

)]γ 〉, where �u
H
ψ � Φp (ibk+1

) (otherwise the computation would

not be accepting by rule (33)). Since ck
mk
� bk+1, a pop move is triggered. We have ζR ∈ Φ

д
p (ibk

),
so by rule (32) we reach configuration 〈bk+1 . . . z,Φ

′(ibk+1
),γ 〉, where �u

H
ψ ∈ Φ′p (ibk+1

). Since this

move is a pop, we have ζR ∈ Φ′(ibk+1
). Because bk+1 � a, the next move is a push that reads bk+1,

leading to 〈vk+1
0 . . . z,Φ(ivk+1

0
), [bk+1,Φ

д (ibk+1
)]γ 〉, where Φд (ibk+1

) = Φ′(ibk+1
). By rule (31), since

�u
H
ψ ∈ Φ′p (ibk+1

), we have ψ ∈ Φc (ivk+1
0

). If we set z = first(vk+1
0 ) (or z = ck+1

0 , or z = bk+2, if

respectively vk+1
0 = ε or uk+1 = ε) and α = [bk+1,Φ

д (ibk+1
)], then A1 =⇒ A2 is proven.
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[A2 =⇒ A1]. Suppose that an accepting computation reaches a configuration 〈yz,Φд (i ′),γ 〉
with �u

H
ψ ∈ Φ

д
c (i ′). By rule (34), the next position cannot be read by a shift move, but only by a

push. Thus, there exists a position i labeled with a such that a � first(y). By rule (30), ζR ∈ Φ
д
p (i ′),

so we also have χ (i, i ′). Thus, by Property 4 of the χ relation, w has the form of Figure 12 with
n ≥ 1, and i ′ = ibk

for some 1 ≤ k ≤ n. Such a push move reads bk and stores a stack symbol
containing Φд (ibk

). Since the computation is accepting, at some point this stack symbol must be

popped. Let 〈b . . . z,Φ(ib ), [ck
mk
,Φд (ibk

)]γ 〉 be the configuration right before this pop move occurs

(we name the look-ahead as b). Recall that ζR ∈ Φ
д
p (ibk

) and �u
H
ψ ∈ Φ

д
c (ibk

), so by rule (32) the

next configuration is 〈b . . . z,Φ′(ib ),γ 〉 with �u
H
ψ ∈ Φ′p (ib ) (and also ζR ∈ Φ′p (ib ) because of the

pop move). By rules (33) and (34), the next move has to be a push, so Φд (ib ) = Φ′(ib ). Therefore,
we have a � b and b = bk+1 (cf. Figure 12, it cannot be b = d ). Also, rule (31) applies, and we have
ψ ∈ Φд (ib ). By the semantics of �u

H
ψ , we can claim (w, i ′) |= �u

H
ψ (recall i ′ = ibk

), which proves
A2 =⇒ A1.

[I1 ⇒ I2] follows directly from A1 ⇒ A2 andAφ−�u
H

ψ ’s DR rules being a strict subset ofAφ ’s.

[I2 ⇒ I1] again follows from A2 ⇒ A1, and the fact that Φд (iz ) may not contain �u
H
ψ , nor states

in α , so rules (30)–(34) may not prevent the computation from reaching a final state. �

4.2.2 Wrap-Up.

Theorem 4.4 (Correctness of Finite-Word Model Checking). Given a finite set of atomic

propositions AP , an OP alphabet (P (AP ),MAP ), a word w on it, and a POTL formula φ, automaton

Aφ is such that it performs at least one accepting computation on w if and only if (w, 1) |= φ.

Proof. We prove by structural induction on formula syntax the following statement: for each
θ ∈ subf (φ), a computation ofAφ is accepting if and only if it is accepting forAφ−θ and for each

position i in the input word w we have (w, i ) |= θ iff θ ∈ Φ
д
c (i ).

From this, it directly follows that in all Aφ ’s accepting computations we have (w, 1) |= φ iff

φ ∈ Φ
д
c (1). Since Φд (1) is an initial state, we always have φ ∈ Φ

д
c (1), henceAφ accepts only words

such that (w, 1) |= φ.
The base case of the induction are members of AP . The only DR rule that applies to them

directly is (1). Clearly, due to (1), all computations of Aφ that reach a final configuration must be

such that for all a ∈ AP we have (w, i ) |= a iff a ∈ Φ
д
c (i ), or no input symbols could be read by push

or shift moves. The other side of the implication is also trivial. As for negated atomic propositions
note that, by A C constraint (a), a � Φc implies ¬a ∈ Φc , so we also have (w, i ) |= ¬a iff ¬a ∈ Φ

д
c (i ).

For the inductive hypothesis, we assume that in all accepting computations of Aφ for each

position i in the input word w and formulaψ ∈ ssubf (θ ) \ {θ } we have (w, i ) |= ψ iffψ ∈ Φ
д
c (i ).

We proved the inductive step for all temporal operators in Lemmas 4.1, 4.2, 4.3, A.1, A.2, and A.3,
while other proofs have been omitted due to their similarity with the previous ones.

For the ∧ propositional operator, there are no DR rules involved, soAφ−(ψ∧ψ ′) = Aφ . The fact

that (w, i ) |= ψ ∧ψ ′ iffψ ∧ψ ′ ∈ Φ
д
c (i ) follows from A C constraint (b) and the inductive hypothesis.

The proof for ∨ is analogous. As for ¬, note that, by A C constraint (a), θ � Φc implies ¬θ ∈ Φc ,
so from (w, i ) |= θ iff θ ∈ Φ

д
c (i ) in the hypothesis we derive (w, i ) |= ¬θ iff ¬θ ∈ Φ

д
c (i ).

Until and since operators rely on A C constraints whose correctness derives from the expansion
laws in Section 3.1. The inductive step for them follows from those of the next and back operators
appearing in the right-hand-sides of the expansion laws.

This concludes our induction argument.
Now, we need to prove that if (w, 1) |= φ, then Aφ has at least one accepting computation.

This computation is such that for each θ ∈ Cl(φ) and position i in the word w it reads, we have
(w, i ) |= θ iff θ ∈ Φ

д
c (i ). First, consider a version of Aφ , called A′φ , built with an empty DR, so

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 3, Article 19. Pub. date: September 2023.



A Model Checker for Operator Precedence Languages 19:35

that its transition relation is a complete graph. Clearly, A′φ performs at least a computation with

the above feature. Since we proved that for each θ ∈ Cl(φ) the rules in DR (θ ) do not block it
if it is such that (w, i ) |= θ iff θ ∈ Φ

д
c (i ), we can conclude that this computation is accepting inAφ

too. �

4.3 Complexity

The set Cl(φ) is linear in |φ |, the length of φ. Atoms(φ) has size at most 2 | Cl(φ ) | = 2O ( |φ |) , and the
size of the set of states is the square of that. Therefore,

Theorem 4.5. Given a POTL formula φ, it is possible to build an OPA Aφ accepting the language

denoted by φ with at most 2O ( |φ |) states.

Aφ can then be intersected with an OPA modeling a program, and emptiness can be decided
with polynomial-time reachability algorithms that we will present in Section 6.

Since it is possible to linearly translate NWTL into POTL in a way similar to what we did with
Operator Precedence Temporal Logic (OPTL) in [27], we can exploit the same lower bounds
for decision problems:

Theorem 4.6. POTL model checking and satisfiability on finite OP words are EXPTIME-complete.

Therefore, POTL does not have a worse computational complexity than NWTL and OPTL, de-
spite its greater expressive power.

5 ω-WORD MODEL CHECKING

To perform model checking of a POTL formula φ on OP ω-words, we adapt the approach used
in [24] for OPTL. We build a generalized ωOPBA (cf. Definition 2.7) Aω

φ = (P (AP ),MAP ,Qω , Iω ,
F,δ ), where Qω = Atoms(φ) × P (Clpend (φ)) × P (Clst (φ)), and Clst (φ) = {χπ

F
ψ ∈ Cl(φ) | π ∈

{�, �,�}} ∪ {�t
H
∈ Cl(φ) | t ∈ {d,u}}.

In finite words, the stack is empty at the end of every accepting computation, which implies
the satisfaction of all temporal constraints tracked by the pending part of states in stack symbols.
In ωOPBAs, the stack may never be empty, and symbols with a non-empty pending part may
remain in it indefinitely, never enforcing the satisfaction of the respective formulas. To overcome
this issue, we add a subset of Clst (φ) to states obtained according to the OPA construction of
Section 4.1.Aω

φ ’s states have the form Φ = (Φc ,Φp ,Φs ), where Φc and Φp have the same role as in
the finite-word case, and Φs is the in-stack part of Φ. All rules defined in Section 4.1 for Φc and Φp

remain the same. At any point in a computation, Φs contains any element of Clst (φ) that is present
in the pending part of any symbol currently in the stack. Thus, pending temporal obligations are
copied from the stack to the ωOPBA state, so that they can be taken into account by the Büchi
acceptance condition. Initial states are the same as in the finite case except their in-stack part is
empty: Iω = {(Φc ,Φp , ∅) | Φ ∈ I }, where I is the initial set of Aφ .

Suppose we want to verify χ�F ψ . Formula χ�F ψ must be inserted in the in-stack part of the
current state whenever a stack symbol containing it in its pending part is pushed. It must be kept
in the in-stack part of the current state until the last stack symbol containing it in its pending part
is popped, marking the satisfaction of its temporal requirement. Then, we can define an acceptance
set F̄χ �

F
ψ ∈ F as the set of states not containing χ�F ψ in their pending or in-stack parts. The same

holds for χ�F . Formally, F̄χ π
F

ψ = {Φ ∈ Qω | χπ
F
ψ � Φp ∪ Φs }, for π ∈ {�,�}. Things are slightly

more complicated with χ�F , as we have F̄χ�
F

ψ = {Φ ∈ Qω | χ�F ψ � Φs ∧ (χ�F ψ � Φp ∨ ψ ∈ Φc )}.
Why this is needed will be clarified by Example 5.2.

A similar issue occurs for the hierarchical next operators, and it can be overcome likewise by
setting F̄�t

H
ψ = {Φ ∈ Qω | �t

H
ψ � Φs } for t ∈ {d,u}.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 3, Article 19. Pub. date: September 2023.



19:36 M. Chiari et al.

Fig. 14. Example run of the automaton for χd
F

ret on word (call call han exc ret ret)ω .

Fig. 15. Example run of the automaton for χd
F

ret on word call(call ret)ω .

We first show the DR rules governing the in-stack part of states. Ifψ = χπ
F
θ ∈ Cl(φ), DR (ψ )

contains the following rules, besides those defined in Section 4.1:

(48) for any (Φ,a,Θ) ∈ δpush, (ψ ∈ Φp orψ ∈ Φs ) iffψ ∈ Θs ;
(49) for any (Φ,a,Θ) ∈ δshift ,ψ ∈ Φs iffψ ∈ Θs ;
(50) for any (Φ,Θ,Ψ) ∈ δpop, (ψ ∈ Φs andψ ∈ Θs ) iffψ ∈ Ψs .

If ψ = �t
H
θ ∈ Cl(φ), DR (ψ ) contains, besides those defined in Section 4.1, rules (49) and (50),

and the following:

(51) for any (Φ,a,Θ) ∈ δpush, (ψ ∈ Φc orψ ∈ Φs ) iffψ ∈ Θs .

We show how the rules for χπ
F

operators work through a few examples; those for �t
H

work in
the same way.

Example 5.1. Figure 14 shows a prefix of an accepting run ofAω
φ for φ = χd

F
ret, which holds in

positions 1 and 2 of the infinite word (call call han exc ret ret)ω . In the initial state, the automaton
guesses that χd

F
ret will be satisfied by χ�F ret, and so does in Φд (2). The first push move puts χ�F ret

in Φд (2) as a pending obligation, and the next one stores Φд (2) in the stack. Due to rule (48), χ�F ret

is stored in the in-stack part of the next state Φд (3), to signal that χ�F ret is pending in the stack.

The run then goes on according to the DR rules for the χ�F operator given in Section 4.1. All
the next push and shift moves propagate it in the in-stack parts thanks to respectively rules (48)
and (49). When reaching the first ret, state Φд (3), which contains a pending χ�F ret, is popped.

However, another instance of χ�F ret is still pending in Φд (2), so χ�F ret must be kept into the in-

stack part. This is accomplished by rule (50): the fact that χ�F ret is in the in-stack part of the popped
state means that another instance of it was pending when it was pushed, so it is propagated into
the in-stack part of the next state. Its propagation stops when Φд (3) is popped (step 7–8): since
χ�F ret � Φ

д
s (3), rule (50) does not allow it into Φ′s (6), so χ�F ret � Φ′s (6). The DR rules for χ�F ret

put it in Φ′p (6) as it has not yet been satisfied. This happens with the shift move that reads the

second ret, and state Φ(7) does not contain χ�F ret in its pending or in-stack part, so Φ(7) ∈ F̄χ �
F

ret.

Aω
φ then goes back to Φд (1), and its subsequent behavior is cyclic. Thus, Φ(7) is visited infinitely

often, and the run is accepting.
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Fig. 16. Example run of the automaton for χd
F

call on word call(call ret)ω .

Figure 15 shows a prefix of a rejecting run of the same automaton on word call(call ret)ω . The
run starts with Φд (1), whereAω

φ guesses —wrongly— that χd
F

ret will be satisfied by χ�F ret. Rules

from Section 4.1 put χ�F ret in Φ
д
p (2), which is then pushed to the stack when reading the second

call. Thus, according to rule (48), we have χ�F ret ∈ Φ
д
s (3). χ�F ret is propagated to Φs (4) by the

subsequent shift move, but it is removed from the in-stack part by the next pop move, because
χ�F ret � Φ

д
s (2). However, rule (7) imposes that χ�F ret ∈ Φ

д
p (2), marking that the satisfaction of

χ�F ret is still pending. From now on, the automaton cycles between states Φд (2), Φд (3) and Φ(4).
These states contain χ�F ret either in their pending or in-stack part, so none of them is accept-

ing, and the run is rejected. Indeed, χ�F ret does not hold in position 1, nor does χd
F

ret: the run
originating from Aω

φ initially guessing χ�F ret is symmetric and also rejecting.

Example 5.2. Figure 16 shows a prefix of an accepting run of Aω
φ for φ = χd

F
call, which holds

in position 1 of the infinite word call(call ret)ω . First, the automaton guesses that χd
F

call will be
satisfied by χ�F call, which becomes pending after the first push move by rule (9). Then, χ�F call is
put into the in-stack part of the current state by rule (48) and propagated by (49). The next pop
move stops its propagation, but χ�F call is in the pending part of Φ′(4) by rule (10). Note that here
we can conclude that χ�F call is satisfied in position 1, because χ (1, 4), call � call and call holds in

position 4. Indeed, Φ′(4) = Φд (2) ∈ F̄χ�
F

call even if χ�F call ∈ Φ
д
p (2), because χ�F call � Φ

д
s (2) and

call ∈ Φ
д
c (2). Since the rest of the run cycles between Φд (2), Φд (3), and Φ(4), it gets accepted.

Thus, we state the following:

Lemma 5.3. Given a finite set of atomic propositions AP , an OP alphabet (P (AP ),MAP ), and a

formulaψ ∈ Clst (φ), let Aω
φ be the ωOPBA built for a formula φ such thatψ ∈ Cl(φ).

For any ω-word w = #xy on (P (AP ),MAP ), let 〈y,Φ,γ 〉 be Aω
φ ’s configuration after reading x .

If ψ = χπ
F
θ for π ∈ {�, �,�} (respectively ψ = �t

H
θ for t ∈ {d,u}), then there exists a stack

symbol [a,Θ] ∈ γ such thatψ ∈ Θp (respectivelyψ ∈ Θc ) iffψ ∈ Φs .

We omit the proof, as it is substantially similar to the one of Lemma 6.1 in [24].
Only chain next operators need to be in Clst (φ), because satisfaction of until operators depends

on them. Correctness proofs for past and next operators still hold in their current form; we need,
instead, to re-prove Lemmas 4.2, A.1, and 4.3, to show that their inductive claim also holds with the
generalized Büchi acceptance condition. We only re-prove those for chain next operators, because
the modifications required for Lemma 4.3 are similar.

Lemma 5.4. Given a finite set of atomic propositions AP , an OP alphabet (P (AP ),MAP ), and a

formula χπ
F
ψ with π ∈ {�, �,�}, letAω

φ be theωOPBA built for a formula φ such that χπ
F
ψ ∈ Cl(φ);

and letAω
φ−χ π

F
ψ

be the ωOPBA built asAω
φ but using DR \DR (χπ

F
ψ ) for δ , and F \ {F̄χ π

F
ψ } as the

set of acceptance sets.

Inductive assumption: in all accepting computations of Aω
φ for each position i in the input word

w and for each sub-formulaψ ′ ∈ ssubf (χπ
F
ψ ) we have (w, i ) |= ψ ′ iffψ ′ ∈ Φ

д
c (i ).
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Inductive claim I : [I1] A computation ρ of Aω
φ is accepting if and only if [I2] ρ is accepting for

Aω
φ−χ π

F
ψ

and for each position i in the input word w we have (w, i ) |= χπ
F
ψ iff χπ

F
ψ ∈ Φ

д
c (i ).

Proof. We prove an auxiliary claim built on the following assertions:

— Let [Aω
1 ] be: (w, i ) |= χπ

F
ψ ;

— let [Aω
2 ] be: all accepting computations of Aω

φ bring it from a configuration 〈yz,Φд (i ),αγ 〉
with χπ

F
ψ ∈ Φ

д
c (i ) to a configuration 〈z,Φд (iz ),α ′γ 〉 such that χπ

F
ψ � Φ

д
p (iz ), |α | = 1 and

|α ′ | = 1 if first(y) is read by a shift move, |α ′ | = 2 if it is read by a push move;
— let [Aω

3 ] be: π = � and all accepting computations of Aω
φ bring it from a configuration 〈yz,

Φд (i ),αγ 〉 with χ�F ψ ∈ Φ
д
c (i ) to an infinite sequence of configurations 〈bk . . . ,Φ

д (ibk
),α ′γ 〉,

such that k ∈ N, χ�F ψ ∈ Φ
д
p (ibk

),ψ ∈ Φ
д
c (ibk

), |α | = 1 and |α ′ | = 1 if first(y) is read by a shift
move, |α ′ | = 2 if it is read by a push move.

We prove that for any ω-word w = #xyz and positions i = |x | + 1, iz = |xy | + 1 in w , Aω
1 ⇐⇒

(Aω
2 ∨Aω

3 ).
In the proofs of Lemmas 4.2 and A.1 we proved that the same auxiliary claim holds in the finite-

word case for χπ
F
ψ with any π , so we would like to show that A1 ⇐⇒ A2 implies Aω

1 ⇐⇒ Aω
2 .

However, if w is an ω-word and π = �, χ�F ψ may be satisfied in i because there exist infinitely
many positions ibk

such that χ (i, ibk
), i � ibk

, and (w, ibk
) |= ψ (cf. Example 5.2). In this case,

Aω
1 ⇐⇒ Aω

2 does not hold, but Aω
1 ⇐⇒ Aω

3 does.
First, we note that DR rules ofAφ are a subset ofAω

φ ’s, andAω
φ ’s additional rules (48)–(50) do

not interfere with others. In fact, by Lemma 5.3 any computation of Aφ can be transformed into
one of Aω

φ by adding in-stack parts to states Φ so that, for all θ ∈ Clst (φ), if the stack contains a
symbol [a,Θ] such that θ ∈ Θp , then θ ∈ Φs .

Moreover,Aω
φ ’s computations are infinite, so they all reach iz , if it exists. Thus,A1 ⇒ A2 clearly

implies Aω
1 ⇒ Aω

2 . Concerning Aω
2 ⇒ Aω

1 , we note that in the proofs of A2 ⇒ A1 the acceptance
condition of Aφ does not matter, and A1 follows from the computation reaching iz . This proves
that A1 ⇐⇒ A2 implies Aω

1 ⇐⇒ Aω
2 .

As stated earlier, A1 ⇐⇒ A2 may not always hold in the ω case. The only case when this
happens is when π = � and χ�F ψ is satisfied by infinite positions ibk

, for k ∈ N: in this case there
exists no iz such that Aω

2 holds, and we must prove Aω
1 ⇐⇒ Aω

3 . The proof of this claim closely
resembles the one of Lemma A.1, so we do not repeat it fully. Aω

3 ⇒ Aω
1 easily follows by the

existence of infinitely many positions where ψ holds, and Aω
1 ⇒ Aω

3 can be shown by detailing a
generic computation of Aω

φ on the word structure of Figure 12.
Now, we prove the inductive claim.
I1 ⇒ I2 follows from Aω

1 ⇐⇒ (Aω
2 ∨ Aω

3 ) and Aω
φ ’s transition relation being a subset of

Aω
φ−χ π

F
ψ

’s.

I2 ⇒ I1 also follows from the auxiliary claim, but we must also show that computations that
satisfy I2 are accepting for Aω

φ . If a computation is accepting for Aω
φ−χ π

F
ψ

, then it satisfies all

acceptance sets except possibly F̄χ π
F

ψ . We must show that a state in F̄χ π
F

ψ occurs infinitely often

if I2 holds.
If χπ

F
ψ is not in Φ

д
p (i ) nor in the pending part of any state in αγ , then it is also not in the

pending part of any state in α ′γ . This can be easily shown by noting that γ remains the same, and
according to the proofs of Lemmas 4.2 and A.1, α ′ is made at most by one symbol from α updated
by a shift move (which does not change its state), and a newly-pushed symbol which, however, is
not constrained to contain χπ

F
ψ in its pending part by any DR rule. By Lemma 5.3, this means

χπ
F
ψ � Φ

д
s (iz ), so Φд (iz ) ∈ F̄χ π

F
ψ if Aω

2 holds. If χπ
F
ψ never holds again in the computation, it
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is trivially accepting; if it holds infinitely many times, a state in F̄χ π
F

ψ is also visited infinitely

many times, so the computation is accepting. If, instead, Aω
3 holds, then Aω

φ visits a sequence

of states that contain χ�F ψ in their pending part and ψ in their current part, which makes them

accepting for F̄χ�
F

ψ .

If χπ
F
ψ is in Φ

д
p (i ) or in the pending part of some state(s) in αγ , it means one or more previous

instances of χπ
F
ψ appeared in previous states of the computation, and are pending. Let i ′ be the

leftmost word position where one of such instances holds: the same reasoning we made for i can
be applied to the instance holding in i ′, proving that the computation reaches a configuration
where χπ

F
ψ does not appear any more in the current state nor in the stack. �

An acceptance condition for summary until operators is also needed, so that computations in
which the satisfaction of an until operator is postponed forever are rejected. For ψ Ud

χ θ ∈ Cl(φ),
we add an acceptance set

F̄ψUd
χ θ = F̄χ �

F
(ψUd

χ θ ) ∩ F̄χ�
F

(ψUd
χ θ ) ∩ {Φ ∈ Qω | ψ Ud

χ θ � Φc ∨ θ ∈ Φc }.

The condition thatψ Ud
χ θ � Φc or θ ∈ Φc allows for accepting computations where each instance

of ψ Ud
χ θ is satisfied, possibly occurring infinitely often. These states are intersected with those

accepting for χ�F (ψ Ud
χ θ ) and χ�F (ψ Ud

χ θ ), to make sure that no until operator is pending or

“hidden” in the stack.
The condition for ψ Uu

χ θ is obtained by substituting � for �. The conditions for hierarchical
operators are similar:

F̄ψUu
H

θ = F̄�u
H

(ψUu
H

θ ) ∩ {Φ ∈ Qω | ψ Uu
H θ � Φc ∨ θ ∈ Φc },

F̄ψUd
H

θ = F̄�d
H

(ψUd
H

θ ) ∩ {Φ ∈ Qω | ψ Uu
H θ � Φc ∨ θ ∈ Φc } ∩ F̄χ�

F
�.

We can now conclude the proof:

Theorem 5.5 (Correctness of ω-Word Model Checking). Given a finite set of atomic propo-

sitions AP , an OP alphabet (P (AP ),MAP ), an ω-word w on it, and a POTL formula φ with no hierar-

chical operators, automaton Aω
φ is such that it performs at least one accepting computation on w if

and only if (w, 1) |= φ.

Proof. The proof follows the one of Theorem 4.4 verbatim, except Lemmas 4.2, A.1 and 4.3 are
replaced by 5.4. �

5.1 Complexity

The complexity claims made for finite-word model checking can be extended to the infinite case,
as the presence of the in-stack part of states does not cause a further blow-up of their amount.
By Theorem 2.8 it is possible to transform the generalized ωOPBA Aω

φ into a normal ωOPBA
with a size increase proportional to |F|. Since F contains one set for each occurrence of a chain or
hierarchical next or until operator in φ, we have |F| = O ( |φ |), which does not change the overall
complexity class. Hence,

Theorem 5.6. Given a POTL formula φ, it is possible to build an ωOPBA accepting the language

denoted by φ with at most 2O ( |φ |) states.

Again, we exploit the complexity lower bounds for NWTL to claim

Theorem 5.7. POTL model checking and satisfiability on OP ω-words are EXPTIME-complete.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 3, Article 19. Pub. date: September 2023.



19:40 M. Chiari et al.

6 IMPLEMENTATION

We implemented the OPA and ωOPBA constructions of Sections 4 and 5 in an explicit-state model
checking tool called POMC [23]. The tool is written in Haskell [61], a purely functional, statically
typed programming language with lazy evaluation. In this section, we describe the underlying
algorithms together with some remarks on more technical aspects of their implementation.

Given a POTL specification φ and an OPA (respectivelyωOPBA)A to be checked, POMC gener-
ates the product automaton betweenA and the automatonA¬φ (respectivelyAω

¬φ ) built according

to Section 4 (respectively 5) on-the-fly while executing a reachability algorithm. POMC checks for
emptiness of the language accepted by an OPA by checking the reachability of an accepting con-
figuration, by means of a modified Depth-First Search (DFS) of the transition relation. Language
emptiness checking for ωOPBA is significantly more involved than the finite-word case, since fair

cycles must be found in the transition relation. We accomplish this by means of graph-theoretic
techniques, with algorithms already sketched in [73] that are similar to the ones developed for
Recursive State Machines (RSMs) [5].

6.1 OPA Language Emptiness Checking

The transition system associated to an OPA can be infinite, because the stack may grow unbound-
edly. However, each transition is determined only by the topmost stack symbol, besides the current
state and the input symbol. Intuitively, in runs in which the stack size grows forever, the OPA must
visit a configuration featuring the same state and topmost stack symbol infinitely often, forming
a cycle. The reachability algorithm exploits this fact to detect cycles in OPA behavior, and thus it
does not have to explore an infinite number of configurations.

To formalize the underlying idea, we define semi-configurations as tuples whose elements
uniquely determine the next move of an OPA, and the semi-configuration graph, which is derived
from an OPA’s transition relation by “projecting” it onto the space of semi-configurations.

Definition 6.1. Given an OP alphabet (Σ,MΣ), where Σ is a finite input alphabet, letA = (Σ,MΣ,
Q, I , F ,δ ) be an OPA, with stack symbols in Γ = Σ ×Q ∪ {⊥}.

A semi-configuration of A is an element of C = Q × Γ × Σ.
The semi-configuration graph ofA is a pair (C,E) where E ⊆ C2 is partitioned into the following

three disjoint sets:

Epush = {((q,д,b), (p, [b,q], �)) ∈ C2 | smb (д) � b ∧ (q,b,p) ∈ δpush ∧ � ∈ Σ ∪ {#}}
Eshift = {((q, [a, r ],b), (p, [b, r ], �)) ∈ C2 | a � b ∧ (q,b,p) ∈ δshift ∧ � ∈ Σ ∪ {#}}

Esupp = {((q,д,b), (p,д, �)) ∈ C2 | A has a support q
b−→ q′ . . .q′′

q
=⇒ p and � ∈ Σ ∪ {#}}.

Elements of semi-configurations represent the current state, the topmost stack symbol, and a
look-ahead for the next input symbol, respectively.

The graph has three kinds of edges: push and shift edges, which represent the respective moves
in A, and support edges,6 which represent a chain support (cf. Definition 2.5). The need for such
edges arises from the fact that, while an OPA may perform push and shift moves freely, pop moves
may only occur if a specific stack symbol is present on top of the stack. Thus, cycles of push and
shift moves may be followed an arbitrary number of times, while cycles of pop moves are con-
strained by the number of stack symbols and, consequently, the number of previous push moves.
Therefore, we use support edges to represent the whole “life” of a stack symbol, from the push
move creating it to the pop move destroying it. Support edges have the additional feature that

6Support edges are analogous to summary edges in [5], with the usual differences due to the use of our relation χ .
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ALGORITHM 1: OPA semi-configuration reachability

1: function Reach(q, д, c, �)
2: if (q, д, �) ∈ V ∨ (q, д, ∗) ∈ V then return false

3: V := V ∪ (q, д, �)
4: if q ∈ QR ∧ д ∈ ΓR then return true

5: a := smb (д)
6: for all (q, b, p ) ∈ δpush s.t. a � b ∧ (b = � ∨ � = ∗) do

7: SupportStarts := SupportStarts ∪ {(q, д, c ) }
8: if Reach(p, [b, q], b, ∗) then return true

9: for all (s, q, c ′, �′) ∈ SupportEnds s.t. a � c ′ do
10: if Reach(s, д, c, �′) then return true

11: if д � ⊥ then
12: [a, r ] := д
13: for all (q, b, p ) ∈ δshift s.t. a � b ∧ (b = � ∨ � = ∗) do

14: if Reach(p, [b, r ], c, ∗) then return true

15: for all (q, r, p ) ∈ δpop, b ∈ Σ∪ {#} s.t. a �b ∧ (b = � ∨ � = ∗) do

16: SupportEnds := SupportEnds ∪ {(p, r, c, b ) }
17: for all (r, д′, c ′) ∈ SupportStarts s.t. smb (д′) � c do
18: if Reach(p, д′, c ′, b) then return true

19: return false

ALGORITHM 2: OPA emptiness check

1: function IsEmpty(A)
2: (Σ, MΣ, Q, I, F , (δpush, δshift, δpop )) := A
3: V := SupportStarts := SupportEnds := ∅
4: QR = F
5: ΓR = {⊥}
6: for all q ∈ I do
7: if Reach(q, ⊥, #, ∗) then return false

8: return true

they “summarize” an entire chain support, so recursively nested chains are replaced by one single
edge, producing a finite graph.

It should be now easy to see that a path in the semi-configuration graph represents a run of
A (the stack can be re-constructed by accumulating pushed symbols), and reachability of a node
in this graph implies reachability of the semi-configuration in the OPA. Algorithm 1 solves the
reachability problem for OPA by performing a DFS on the semi-configuration graph on-the-fly.
Each time a chain support is explored, its ending semi-configuration is saved and associated with
the starting one. So, the next time the starting semi-configuration is reached, the support does not
have to be re-explored.

Function Reach receives as its arguments a state q ∈ Q , a stack symbol д ∈ Γ, a character c ∈ Σ,
and � ∈ Σ ∪ {∗}. The algorithm searches the semi-configuration graph of the OPA starting from
semi-configuration (q,д, �) and stops when it reaches a semi-configuration (q′,д′, �′) with q′ ∈ QR

and д′ ∈ ΓR , where QR and ΓR are the sets of target states and stack symbols. We admit ∗ as a wild-
card look-ahead representing all characters in Σ to avoid creating a separate semi-configuration
for each input symbol after push and shift moves. The purpose of character c will be explained
later.

The algorithm first checks whether the current semi-configuration has already been visited or
is a target semi-configuration, and terminates in these cases. Otherwise, it proceeds to examine all
transitions that the OPA could perform next.

The loop in line 6 explores push moves. Before analyzing the semi-configuration produced by the
push move through a recursive call, it saves the current semi-configuration in the set SupportStarts,
which contains semi-configurations from which a support begins. The contents of SupportStarts

will be matched with pop moves to create support edges. The loop in line 13 performs shift moves
by updating the input symbol in д and exploring the resulting semi-configuration.

The loop in line 15 performs pop moves: it looks into SupportStarts for semi-configurations that
led to push moves that could have pushed д onto the stack, and for each one of them (line 17) it
explores the semi-configuration resulting by their pop. Each one of the iterations of the internal
loop corresponds to the exploration of a support edge. Here we use character c , called the latest

pushed look-ahead. We use it to match the state r in the topmost stack symbol д with the character
that was pushed with it, in order to uniquely identify the push move that pushed it. We need to
store it separately because the character in д could be changed by shift moves.
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Until now we have ignored the role of SupportEnds. To see why it is needed, suppose the algo-
rithm reaches a semi-configuration (q,д, �) with latest pushed look-ahead c that leads to a push of
[q, �] to the stack: tuple (q,д, c ) is inserted into SupportStarts, and the subsequent support explored,
starting from (p, [q, �], ∗). Later, [q, �] is popped by a move that leads to a semi-configuration
(s,д, �′) for some �′ ∈ Σ and latest pushed look-ahead c . Then, suppose a semi-configuration
(q,д′, �) is reached with д′ � д that admits the same push move: the next semi-configuration to
be explored would be, again, (p, [q, �], ∗). But this semi-configuration is inV , and would not be ex-
plored. This would prevent the algorithm from exploring a summary edge that leads to (s,д′, �′),
thus missing part of the graph.

To solve this issue, when exploring a pop move the algorithm saves into SupportEnds a tuple
that allows it to reconstruct its target configuration. After each push move, in line 9, the algorithm
uses tuples in SupportEnds to jump directly from the push move starting a support that has already
been explored to the semi-configuration it ends with, effectively following a support edge.

To solve the emptiness problem, as shown in Algorithm 2 we pose QR = F and ΓR = {⊥}, and
call Reach(q,⊥, #, ∗) for each q ∈ I .

Complexity. Each time an edge in δ is explored, Reach is called at most once for each element in
SupportStarts and SupportEnds, which is bounded by |δpush |2 (the number of possible push moves
times stack symbols, which is also bounded by |δpush |). The space complexity is dominated by the
size of V , which in the worst case contains all semi-configurations. Thus, each call to Reach has
worst-case time complexityO ( |δ | |δpush |2 |Σ|) and space complexityO ( |Q | |δpush | |Σ|). Note that only
transitions and states that are actually visited contribute to the complexity, so the above bounds
are reached only if the whole OPA is visited. Also, if Σ contains sets of atomic propositions, we
consider only those on which the OPM is defined. E.g., with Mcall we use only elements of Σcall as
look-aheads, and |Σcall | is a small constant.

Remark. When using these algorithms for model checking, states are pairs of states of A and
A¬φ . According to DR rule (1) from Section 4.1, states of A¬φ contain exactly the atomic propo-
sitions that will be read by subsequent push and shift moves. Thus, it is possible to omit the look-
ahead � and the latest pushed look-ahead c , by extracting sets of atomic propositions from states.
So, |Σ| can be removed from the above complexity bounds.

6.2 ωOPBA Emptiness Checking

The algorithm for checking emptiness of an ωOPBA has been developed in [72]. Due to the Büchi
acceptance condition, to check whether an ωOPBA has an accepting run we need to check for
reachable cycles containing final states. In Nondeterministic Büchi Automata (NBAs) this is
done with a nested DFS, but adapting this algorithm to ωOPBAs is sub-optimal, as was shown
for RSMs in [5]. Thus, following the same approach as [5], we use an on-line algorithm to
incrementally compute Strongly Connected Components (SCCs) while summary edges are
discovered.

We use the path-based algorithm by H.N. Gabow [40], which is well-suited for early-termination
and can be easily combined with the transition graph’s exploration, because it is based on a DFS.
This algorithm performs a DFS on the graph, and contracts SCCs as it finds back-edges. It finds all
SCCs in a graph in linear time, by using simple data structures such as arrays and stacks.

The overall fair-cycle detection algorithm works by alternating two phases:

— a search phase, in which the transition graph of the ωOPBA is explored and processed by
the SCC algorithm without following summary edges (or chain supports), which are stored
in a set;
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— a collapse phase, where summary edges collected in the search phase are added to the graph,
and the SCC algorithm only is run once again; resulting new SCCs are collapsed into one
single node, if any.

After the collapse phase, a new search phase is launched starting from semi-configurations reached
by summary edges, and so on. If a SCC containing final states is detected during any of the two
phases, the algorithm terminates, as an accepting run has been found. Otherwise, the algorithm
terminates once no more summary edges have been found, which means that the ωOPBA accepts
the empty language.

Complexity. This algorithm has a worst-case time complexity of O (k |δ | |δpush |3 |Σ|), where k is

the number of SCCs found, and space complexity O ( |δ | |δpush |2 |Σ|). k is bounded by |Q |, leading

to a time bound O ( |Q | |δ | |δpush |3 |Σ|). We can make the same considerations on the size of Σ as in
Section 6.1.

On the choice of Haskell as the implementation language

The model checkers that have obtained most success in the research community are written in
imperative programming languages. Just to name a few, the already mentioned SPIN [50] and
NuSMV [28] are written in C, and UPPAAL [11] in C++. In this context, the choice of writing a
model checker in a purely functional programming language like Haskell deserves some remarks.

The main reason for this choice was that the declarative nature of Haskell and its syntax, which
is close to mathematical notation, make it easier to code the numerous rules required by the au-
tomaton construction procedure. Moreover, all such rules only need to be activated when the
relevant formula is present in the closure. We exploit higher order functions and lazy evaluation
to evaluate only rules that are actually needed, something that would require substantial engi-
neering efforts in imperative languages, but that comes naturally with Haskell (in practice, the
automaton’s transition relation is a thunk that contains only references to functions encoding the
relevant rules).

The main drawback of using a functional language is that the reachability algorithms are based
on a DFS, which is an inherently sequential algorithm: the global sets and maps used to keep track
of visited semi-configurations, as well as SupportStarts and SupportEnds, do not cope well with
referential transparency (in practice, such data structures would need to be partially duplicated
at any update, with considerable overhead). Luckily, Haskell offers monads to express sequential
computations and, in particular, the ST monad implements the lazy functional state threads para-
digm [56], which allows us to employ mutable data structures embedded in a purely functional
context. This represents the standard solution for structuring a DFS search in a lazy functional
language [53].

The overall result is a relatively small (∼5,000 lines of code) and maintainable code base, without
sacrificing efficiency.

7 EXPERIMENTAL EVALUATION

We evaluate POMC on two benchmark suites, which we made publicly available [23]. The first one
consists of three case studies that were modeled manually as OPAs in [25], and which we now also
model as MiniProc programs (Section 7.1), complemented by a systematic verification of the largest
one of such programs against a variety of requirements expressed as nontrivial POTL formulas.
The main goal of these benchmarks is to stress the key features of OPLs and POTL to evaluate the
potential practical application thereof in terms of model checking. The second suite (Section 7.2)
comprises different MiniProc implementation variants of the QuickSort algorithm, and continues
from the Example 2.10. In this case, the accent is on verifying algorithmic correctness and program
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Fig. 17. “Basic larger” MiniProc program.

termination, possibly in the presence of exceptions. While the case studies in Section 7.1 were
initially conceived as OPAs on finite-length sentences and subsequently one of them was tested
forω-languages too, in Section 7.2 we use exclusivelyωOPBAs, as we need to perform termination
analysis.

7.1 Basic Case Studies

The first three benchmarks of this section are a simple and a more complex case of stack inspection,
and one of exception safety. The fourth one instead is systematic verification of a single program
against many different POTL formulas; in this case, the verification is carried over both for the
OPA and for its ω version.

Simple stack inspection. We checked formula

�
(
(call ∧ pB ∧ Scall (�, pA)) =⇒ CallThr (�)

)
,

from Section 3.3 on two simple MiniProc programs similar to the one of Figure 4(b), named Simple1
and Simple2 in the first rows of Tables 1 and 2 and a third one, called “basic larger” in the third
row of the same tables, and shown in Figure 17.

Java-inspired stack inspection. The security framework of the Java Development Kit (JDK) is
based on stack inspection, i.e., the analysis of the program stack contents during execution. The
JDK provides method checkPermission(perm) from class AccessController, which searches
the stack for frames of functions that have not been granted permission perm. If any are found,
an exception is thrown. Such permission checks prevent the execution of privileged code by unau-
thorized parts of the program, but they must be placed in sensitive points manually. Failure to
place them appropriately may cause the unauthorized execution of privileged code. An automated
tool to check that no code can escape such checks is thus desirable. Any such tool would need the
ability to model exceptions, as they are used to avoid code execution in case of security violations.

Such needs are explained in [51] through an example Java program for managing a bank account.
It allows the user to check the account balance and withdraw money. To perform such tasks, the
invoking program must have been granted permissions CanPay and Debit, respectively. We mod-
eled this program as MiniProc code and as an OPA, both named Java Security in the fourth row
of Tables 2 and 1 respectively, and proved that the program enforces security measures effectively
by checking it against the formula

�(call ∧ read =⇒ ¬(� Sd
χ (call ∧ ¬CanPay ∧ ¬read))),

meaning that the account balance cannot be read if some function in the stack lacks the CanPay
permission (a similar formula checks the Debit permission).
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Table 1. Results of the Evaluation of Hand-made OPAs

# Benchmark name # states Time (ms) Total Memory (KiB) MC Memory (KiB) Result

1 Simple1 12 1,009 73,632 6,096 True
2 Simple2 24 707 73,671 1,911 False
3 Basic larger (Figure 17) 30 1,214 73,633 9,104 True

4 Java security 42 289 71,504 1,756 True

5 unsafe stack 63 1,332 71,482 21,095 False
6 safe stack 77 596 71,480 3,979 True
7 unsafe stack neutrality 63 4,821 209,981 83,850 True
8 safe stack neutrality 77 787 71,486 8,864 True

“# states” refers to the OPA to be verified.

Exception Safety. This case study comes from a tutorial on how to make exception-safe generic
containers in C++ [75]. It consists of two implementations of a generic stack data structure, para-
metric on the element type T. The first one is not exception-safe: if the constructor of T throws
an exception during a pop action, the topmost element is removed, but it is not returned, and it is
lost. This violates the strong exception safety requirement that each operation is rolled back if an
exception is thrown. The second version of the data structure instead satisfies such requirement.

While exception safety is undecidable in C++, here we consider the weaker requirement that
each modification to the data structure is only committed once no more exceptions can be thrown.
We modeled both implementations as OPAs, and checked this requirement against the following
formula:

�(exc =⇒ ¬((�u modified ∨ χu
P modified) ∧ χu

P (Stack :: push ∨ Stack :: pop))).

POMC successfully found a counterexample for the first implementation named unsafe stack in
the fifth row of the two tables, and proved safety of the second one named safe stack in the sixth
row.

Additionally, we proved that both implementations are exception neutral as reported in rows
7 and 8 of both tables, i.e., Stack functions do not block exceptions thrown by the underlying type
T. This was accomplished by checking the following formula, where Stack identifies all methods
of the Stack class:

�(exc ∧ �u T ∧ χd
P (han ∧ χd

P Stack) =⇒ χd
P χd

P χu
F exc).

Checking the basic larger program against a variety of formulas. To complete the first suite of
experiments we performed a systematic check of the program of Figure 17 against many formulas
devised with the purpose of testing all POTL operators. They differ from each other in meaning,
length, and complexity. Such formulas are explicitly and identically reported in Tables 3 and 4.
This experiment has also the goal of comparing the tool performances in the two cases of OPA
and ωOPBA. Both automata were automatically generated from the MiniProc code.

Results. These experiments were executed on a laptop with a 2.2 GHz Intel processor and 15 GiB
of RAM, running Ubuntu GNU/Linux 20.04.

The results of the first three benchmarks are shown in Tables 1 and 2, reporting, respectively,
on the implementations on manually designed OPAs and those automatically generated from
MiniProc. Tables 3 and 4 instead list explicitly the —further— POTL formulas used to verify the
“basic larger” program and the results obtained for the OPA and the ωOPBA, respectively. Tables 1
through 3 were included in artifact [26].
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Table 2. Results of the Evaluation of MiniProc Programs Automatically Compiled into OPAs

# Benchmark name # states Time (ms) Total Memory (KiB) MC Memory (KiB) Result

1 Simple1 19 1,028 71,493 7,009 True
2 Simple2 31 743 71,490 2,138 False
3 Basic larger (Figure 17) 44 1,315 71,487 8,125 True

4 Java security 1236 1,839 71,489 17,571 True

5 unsafe stack 162 2,869 88,394 33,990 False
6 safe stack 340 11,572 523,531 207,545 True
7 unsafe stack neutrality 162 12,670 468,025 197,892 True
8 safe stack neutrality 340 18,474 760,313 312,682 True

“# states” refers to the OPA to be verified.

Table 3. Results of Additional Experiments on the Program of Figure 17, Automatically Translated into an
OPA with 44 Reachable States

Formula Time (ms) M.T. (MiB) M.MC (KiB) Results

χd
F

pErr 0.9 70 160 False�d (�d (call ∧ χu
F

exc)) 25.9 70 870 False�d (han ∧ (χd
F

(exc ∧ χu
P

call))) 45.6 70 1,354 False
�(exc =⇒ χu

P
call) 12.1 70 599 True

�Ud
χ exc 2.0 70 141 False

�d (�d (�Ud
χ exc)) 4.4 70 119 False

�((call ∧ pA ∧ (¬retUd
χ WRx)) =⇒ χu

F
exc) 5,388.9 121 49,135 True

�d (�u
call) 0.5 70 105 False�d (�d (�d (�u

call))) 3.2 70 145 False

χd
F

(�d (�u
call)) 1.4 70 148 False

�((call ∧ pA ∧ CallThr (�)) =⇒ CallThr (eB )) 13,119.2 200 80,975 False�(�d
H

pB ) 2.4 70 120 False�(�d
H

pB ) 3.4 70 120 False�(pA ∧ (callUd
H

pC )) 599.0 70 16,547 True�(pC ∧ (call Sd
H

pA)) 778.6 70 17,305 True

�((pC ∧ χu
F

exc) =⇒ (¬pA Sd
H

pB )) 134,494.0 5,920 2,641,030 False
�(call ∧ pB =⇒ ¬pC Uu

H
pErr ) 175.8 70 7,226 True�(�u

H
pErr ) 1.3 70 125 False�(�u

H
pErr ) 1.4 70 124 False�(pA ∧ (callUu

H
pB )) 11.2 70 117 False�(pB ∧ (call Su

H
pA)) 11.9 70 117 False

�(call =⇒ χd
F

ret) 3.5 70 115 False
�(call =⇒ ¬�u

exc) 2.5 70 115 False
�(call ∧ pA =⇒ ¬CallThr (�)) 150.0 70 2,997 False
�(exc =⇒ ¬(�u (call ∧ pA) ∨ χu

P
(call ∧ pA))) 30.7 70 119 False

�((call ∧ pB ∧ (call Sd
χ (call ∧ pA))) =⇒ CallThr (�) 1,242.5 70 8,143 True

�(han =⇒ χu
F

ret) 20.4 70 659 True
�Uu

χ exc 7.0 70 137 True

�d (�d (�Uu
χ exc)) 57.2 70 1,380 True

�d (�d (�d (�Uu
χ exc))) 196.1 70 2,939 True

�(call ∧ pC =⇒ (�Uu
χ exc ∧ χd

P
han)) 103.7 70 863 False

callUd
χ (ret ∧ pErr ) 1.8 70 117 False

χd
F

(call ∧ ((call ∨ exc) Su
χ pB )) 9.9 70 116 False

�d (�d ((call ∨ exc)Uu
χ ret)) 6.2 70 116 False

The abbreviations are: M.T. = Total Memory, M.MC = Memory for Model Checking only.
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Table 4. Results of Additional Experiments on the Program of Figure 17, but Interpreted as a
Continuously Running Program

Formula Time (ms) M.T. (MiB) M.MC (KiB) Results

χd
F

pErr 31.7 71 3,717 False�d (�d (call ∧ χu
F

exc)) 125.0 71 7,471 False�d (han ∧ (χd
F

(exc ∧ χu
P

call))) 231.0 71 16,722 False
�(exc =⇒ χu

P
call) 8.5 71 864 True

�Ud
χ exc 10.6 71 1,050 False

�d (�d (�Ud
χ exc)) 23.0 71 1,590 False

�((call ∧ pA ∧ (¬retUd
χ WRx)) =⇒ χu

F
exc) 39,307.0 2,540 862,164 True

�d (�u
call) 2.1 71 156 False�d (�d (�d (�u

call))) 12.9 71 907 False

χd
F

(�d (�u
call)) 46.2 72 2,682 False

�((call ∧ pA ∧ CallThr (�)) =⇒ CallThr (eB )) 91,806.6 4,137 1,416,790 True�(�d
H

pB ) 26.4 71 3,005 False�(�d
H

pB ) 22.2 71 2,692 False�(pA ∧ (callUd
H

pC )) 3,794.6 490 227,858 False�(pC ∧ (call Sd
H

pA)) 3,692.4 415 192,171 False

�((pC ∧ χu
F

exc) =⇒ (¬pA Sd
H

pB )) – – – O.O.M.
�(call ∧ pB =⇒ ¬pC Uu

H
pErr ) 142.1 71 11,833 True�(�u

H
pErr ) 5.2 71 167 False�(�u

H
pErr ) 14.3 71 992 False�(pA ∧ (callUu

H
pB )) 29.6 72 2,675 False�(pB ∧ (call Su

H
pA)) 72.8 72 5,043 False

�(call =⇒ χd
F

ret) 58.5 72 4,215 False
�(call =⇒ ¬�u

exc) 6.9 71 116 True
�(call ∧ pA =⇒ ¬CallThr (�)) 409.9 71 18,125 True
�(exc =⇒ ¬(�u (call ∧ pA) ∨ χu

P
(call ∧ pA))) 32.2 72 1,800 True

�((call ∧ pB ∧ (call Sd
χ (call ∧ pA))) =⇒ CallThr (�) 1,917.7 130 42,035 True

�(han =⇒ χu
F

ret) 42.6 71 3,260 True
�Uu

χ exc 40.2 72 3,190 False

�d (�d (�Uu
χ exc)) 260.5 72 11,556 False

�d (�d (�d (�Uu
χ exc))) 826.6 94 40,479 False

�(call ∧ pC =⇒ (�Uu
χ exc ∧ χd

P
han)) 937.7 71 27,683 False

callUd
χ (ret ∧ pErr ) 25.9 71 2,555 False

χd
F

(call ∧ ((call ∨ exc) Su
χ pB )) 179.8 71 10,056 False

�d (�d ((call ∨ exc)Uu
χ ret)) 397.7 72 17,557 False

The program has been automatically translated into an ωOPBA with 44 reachable states. The abbreviations are: M.T. =

Total Memory, M.MC = Memory for Model Checking only, O.O.M. = Out of memory.

In the tables, by “Total” memory we mean the maximum resident memory including the Haskell
runtime (which allocates ~70 MiB by default), and by “MC” the maximum memory used by model
checking as reported by the runtime.

Table 1 shows that model checking on hand-made OPAs runs in at most a few seconds, and with
a modest memory occupancy. In Table 2, when checking the same case studies by using automat-
ically-generated OPAs as models, the execution times increase significantly due to the larger size
of generated OPAs, which is consistent with the reachability algorithm having a super-linear (but
still polynomial) computational complexity. The time and memory requirements remain, however,
reasonable. The same can be said about the numerous formulas that we check in Table 3, most of
which take less than one second, except a few outliers, which highlight the fact that the process is
exponential in formula length.
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Finally, in Table 4 we see the behavior of theωOPBA emptiness algorithms on the same formulas
as in Table 3. In this case, the execution times increase significantly, due to the higher complexity
of finding SCCs instead of just checking reachability. However, the time taken by most formulas
remains of at most a few seconds, and the same can be said for memory occupancy. There are a
few outliers, this time more than in the finite-word case, and one of them even runs out of memory.
Again, this is a symptom of the worst-case complexity of the problem, which manifests itself with
longer formulas and with hierarchical operators in particular. We did not try the case studies from
Table 2 as ωOPBA, because the properties we check do not make sense in the ω-word case.

In conclusion, we can state that the results are promising also in practice, and this opens the way
to the use of these techniques for checking more complex systems, such as real-world programs,
or parts thereof.

7.2 QuickSort

This benchmark is an adaptation from the suite packaged with the Moped model checker [52]; it
consists of a Java implementation of the QuickSort algorithm, which we tailored to exceptions, to
show the greater expressive power of POMC to model real-world procedural programs. QuickSort
is a well-known sorting algorithm and an ideal case study for the verification of infinite state-
space programs, because it admits a naturally recursive implementation. In different variants, it
has been targeted in the literature by some state-of-the-art program verifiers (such as DAFNY [21]
and STAINLESS [45]).

Two versions of QuickSort are included in Moped: a correct one (Correct Quicksort), and a faulty
one (called Buggy Quicksort, or Error Quicksort) which enters an infinite loop for some input arrays,
and of which we presented a MiniProc version in Figure 6. Moped [37, 74] has been used to prove,
respectively, the correctness of the former one and the incorrectness of the latter one.

Our first benchmark is an enrichment of the correct QuickSort in Moped, by introducing the
management of exceptions. The MiniProc code, called Semisafe, is shown in Figure 18. The Quick-
Sort procedure qs() receives as input an array of objects to be sorted. Since the objects are of
non-primitive types, the array may contain null references. If one of them is read by the proce-
dure, it throws a NullPointerException, potentially terminating the program abnormally. Thus,
we devised the following version of the algorithm: procedure qs() is first called in a try-catch
block. If it throws an exception, an input-sanitizing procedure named parseList() is called, which
removes null references from the array, thus enforcing void safety [65]. Then, qs() is called on the
new array.

To explore how the model checking implementation scales in practice with respect to the theo-
retical results, we explored the performances of the same MiniProc model with varying state-space
sizes. In particular, two parameters affect the model:

— M, the length of the array to be sorted. We considered up to 7 elements in the array (M ∈ [2, 7]).
— K, the number of bits to represent array values (K ∈ [1, 4]).

These two parameters determine the number of bits G = K ·M that the model needs for representing
the global variables. In the model, array values are chosen nondeterministically before the first call
to qs(), so that every possible combination is explored by the checker. Hence, the number of initial
states is given by 2G. As an example, for the model of Figure 6 we have (K, M) = (3, 4). Figure 18
reports the MiniProc program for M = 4 and K = 3. With respect to the buggy version, the Semisafe
procedure keeps track of the elements equal to the pivot and does not call itself recursively on them.

The benchmark is equipped with ten properties (Q.1–Q.10), which we describe below. Their
POTL formulation, as well as the satisfaction results are listed in Table 5. Two properties are usually
of primary interest for such a program:
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Fig. 18. The “Semisafe” Quicksort algorithm in MiniProc.

— The program terminates on any input array, and does it properly. This means that it always
reaches a ret statement (Property Q.1) for the main procedure. To verify it, we impose the
first position, which is the call of the main function, to be in the χ relation with the corre-
sponding return.7

— Any input array is correctly sorted at the end of the Quicksort procedure (Property Q.2). In
order to verify it, we introduce the Boolean variable sorted. At every swap of values in the
array, we check if the array is sorted in ascending order, and update accordingly the value for
sorted. The verification of this property is somewhat decoupled from the previous one: Q.2

does imply the termination of the program, but not a proper one, as the matching statement
in the χ relation may either be a ret or an exc statement.

For our benchmark, these simple properties are false, because qs() might throw other kinds of
exceptions even after null references have been removed, so the program may terminate excep-
tionally even before the array is sorted. We therefore verify the following ones:

— Q.3 and Q.4 check whether the main and qs() procedures satisfy the no-throw guarantee,
and POMC correctly finds out that they might be terminated abnormally by exceptions.

— Q.5 verifies that the program can be terminated by an exception only if the second call to
qs() throws one, which means that the array has been sanitized and the exception is not a

7Remember that, when termination is an issue, we must use ωOPBAs. Thus, this whole benchmark suite adopts ωOPBAs.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 3, Article 19. Pub. date: September 2023.



19:50 M. Chiari et al.

Table 5. Results of Verification of the QuickSort Benchmark

# Formula Result

Q.1 χu
F

(ret ∧ main) False
Q.2 χu

F
sorted False

Q.3 �((call ∧ main) =⇒ ¬(�u
exc ∨ χu

F
exc)) False

Q.4 �((call ∧ qs) =⇒ ¬(�u
exc ∨ χu

F
exc)) False

Q.5 (�u
exc ∨ χu

F
exc) =⇒ �u (exc ∧ hasParsed) ∨ χu

F
(exc ∧ hasParsed) True

Q.6 (�u
exc ∨ χu

F
exc) =⇒ �u (exc ∧ sorted) ∨ χu

F
(exc ∧ sorted) False

Q.7 �((call ∧ accessValues) =⇒ hasParsed ∨ (� Sd
χ han)) True

Q.8 χu
F

(ret ∧ main) ∨ χu
F

(exc ∧ hasParsed) True
Q.9 χu

F
(sorted) ∨ χu

F
(exc ∧ hasParsed) True

Q.10 �(ret ∧ main ∧ sorted) ∨ χu
F

(exc ∧ hasParsed) True

NullPointerException. In the MiniProc model, hasParsed is an atomic proposition that
is true only after the execution of the input-sanitizing procedure.

— Q.6 verifies the property that the array is correctly sorted, hence in the right state, if the
program is terminated by an exception. It is false because qs() might throw an exception
before having finished sorting the array.

— Q.7 is a stack-inspection property that verifies that whenever an exception is thrown, either
there is a handler on the stack (so we are in the first call to qs()), or parseList() has
already been called (so we are in the second call), and hence the exception is, again, not a
NullPointerException.

— Q.8 checks that the program always terminates, either properly or by an exception from
the second call to qs(). It is also called conditional proper termination, since it states that
the program terminates properly unless an exception is thrown after the input-sanitizing
procedure.

— Similarly, Q.9 checks that the only reason for the array not to be sorted when the program
terminates is an exception thrown by the second call to qs() (the so-called conditional cor-
rectness).

— Finally, Q.10 verifies Q.8 and Q.9 together, with a small variant that uses the � operator.

In total, our benchmark is composed of 240 experiments. Figures 19–21 report the performance
results for a false formula, Q.1, and two valid ones, Q.7 and Q.8. Because of space limits, the graphs
for the remaining formulae are left to Appendix B. The graphs show the execution times for the
model checking queries for each possible value of G. A timeout of one hour is used. All times
are in seconds. Experiments that reach this threshold are interrupted, hence not reported in the
graphs. Since some values of G may be induced by different combinations of K and M, each dot is
also associated with the corresponding (K, M) pair. For example, for G = 4, there are two matching
experiments: one for (K, M) = (1, 4) and one for (K, M) = (2, 2). All the experiments were run on a
server with a 2.0 GHz AMD CPU and 500 GiB of RAM.

For all formulae, the experiments show a normal worst-case exponential behavior with respect
to G. The highest value of G handled by POMC within the timeout is reached with a formula
that actually holds, whereas typically finding a counterexample should occur earlier on average,
as POMC features on-the-fly state exploration and early termination. This peak is 12, given by
formula Q.7. 12 bits correspond to 4,096 initial states. However, the maximum values before the
exponential blow up are on average smaller for valid formulae (7.6) with respect to false ones (8.8),
in agreement with the exploration strategy.
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Fig. 19. Experimental results on property Q.1.

When G can be given by different combinations of K and M, M is always dominating. This adheres
to the theoretical worst-case complexity of the sorting algorithm O (M2), given that the checker
has to explore all the recursive calls for every possible initial state (2G), thus yielding an overall
complexity of O (2G · M2). Unfortunately, there are low chances to share the search space between
different initial states, as different global variables (the array to be sorted, which contains different
values in different initial states) induce different search spaces. A partial sharing happens only
for those pairs of initial states that correspond to the same set of array values, but with a different
ordering. In such a case it may happen that, in the recursive calls, the checker finds itself exploring
the sorting of a subarray in an already visited global state, thus aborting the exploration.

Some outliers may blur the inspection of the graphs: as an example, in Figure 20 experiment
(1, 5) overcomes experiment (3, 2). However, the exponential behavior can still be found in this
case by considering that experiment (2, 3), which corresponds to G = 6 as well, while not present
in the figure because of the timeout, requires more than 3,600 seconds.

Among the ones terminating within the blow up, the highest experiment in memory consump-
tion allocated around 134 GiB. However, most of them do not require such a powerful device: the
average amount of memory allocated is 27 GiB.

7.2.1 Iterated QuickSort. The aim of this section is to present a purely “omega” algorithm, that
is, a routine that is intentionally meant to execute for an indefinite amount of time. Such rou-
tines are usually found in web interfaces or network protocols, where a server keeps listening
on an input channel. When a connection is established, the interaction proceeds according to the
protocol. However, if something goes wrong, the current session has to be interrupted, and the
server gets back to the channel. In such cases, besides investigating the disruption’s causes, it is
crucial to establish that the disruption of a single session does not affect the operability of the
server.

To show the suitability of POMC for the verification of such protocols, in this experiment, we
analyze another variant of the QuickSort benchmark. A routine continuously generates arrays by
choosing their elements nondeterministically, and then sorts them with the correct qs() procedure
on the generated array. If, however, the stack size reaches a threshold value, and the allocation of
a new frame is required, an exception is thrown, the call stack is emptied and a new array is
generated.
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Fig. 20. Experimental results on property Q.7.

Fig. 21. Experimental results on property Q.8.

We consider arrays of 3 elements, whose cells contain 3-bit unsigned integer values. MAX_STACK,
the threshold, is set at 3. POTL formulas, verification results, and execution times are reported in
Table 6.

The main property we verify is that the routine never terminates. This can be achieved with
different formulas. Namely, formula IQ.1 checks that the call of the main procedure does not have
a matching ret statement or an exception that aborts it. This represents a variant of the no-throw
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Table 6. Iterated QuickSort Experiment

# Formula Time (s) Result

IQ.1 ¬ χu
F

((ret ∧ main) ∨ exc) 148.19 True
IQ.2 �(exc =⇒ χu

P
han) 59.78 True

IQ.3 �(�(call ∧ qs)) 77.26 True

IQ.4 �((call ∧ qs ∧ �d
han) =⇒ (χu

F
(ret ∧ qs ∧ sorted) ∨ χu

F
(exc ∧ maxReached))) >3,600 True

Fig. 22. An abstract version of the “Buggy” QuickSort algorithm in MiniProc.

guarantee, previously introduced. Similarly, IQ.2 checks that every thrown exception has a match-
ing handler that catches it, thus preventing the pop of the initial call from the stack. IQ.3 is a
liveness property that requires that calls to the QuickSort procedure are endlessly pushed onto
the stack.

Finally, to verify the QuickSort procedure, we introduce formula IQ.4. It expresses conditional
correctness and conditional proper termination of procedure qs(). Its meaning is that every initial
call of qs() on an array either terminates properly with a ret statement after having correctly
sorted the array, or is interrupted by an exception due to having reached the maximum stack size
(maxReached).

7.2.2 Buggy Quicksort. For completeness, we show the analysis of the buggy variant performed
by POMC. First, we consider the termination check experiment. Following the approach of [37, 74],
we abstract away from the array content and just regard the local variables, thus generating a
smaller model. With respect to Figure 6, we replace the comparison a[hi] > piv with a nonde-
terministic choice (except for the first loop iteration, when we know that the outcome is false).
The main model parameter is now N, the number of bits used to represent the local variables. An
example with N = 3 is given in Figure 22. The model does not have global variables, while it has 4
local variables: left, right, lo, hi. The values of left and high are chosen nondeterministically
before the first call to qs(), hence the number of initial states is 22N. The formula we verify is�(ret∧main) (BQ.1), which is equivalent to the POTL formula χu

F
(ret∧main), as there is a single

initial call to the main procedure. The results, for different values of N, are reported in Table 7, left
side, where a timeout of 1 h is used.
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Table 7. Results of Termination Check (BQ.1, Left) and Sorting Correctness (BQ.2, Right) for the
(Abstracted) Buggy QuickSort

N Time (s) Total memory (KiB) Result

3 0.011 52,972 False
5 0.022 52,972 False
7 0.072 52,964 False
9 0.320 55,920 False
10 0.649 92,576 False

K M Time (s) Total memory (KiB) Result

1 2 0.167 58176 False
2 4 0.312 52,932 False
2 7 0.522 66,356 False
3 4 0.323 52,804 False
4 6 0.579 54,856 False

Secondly, we report on the verification of the model’s correctness of sorting. In order to do so,
we reintroduce the array values and consider the model of Figure 6. The formula is χu

F
sorted

(BQ.2). As the first position is a call to the main procedure, and there are no exceptions in this
model, the matching position in the χ relation can only be the corresponding ret statement. Then,
the previous experiment implies the falsehood of this one. Results are reported in Table 7 (right
side), with varying values of K and M .

7.3 Related Tools

Two well-established formalisms that model recursive programs are Pushdown Systems (PDS’s)
[18, 38] and (Extended) Recursive State Machines (ERSMs) [3]. Despite taking different perspec-
tives, they have equivalent expressive power [3].

PDS’s are supported by the model checker Moped [37]. Informally, they are Transition Systems
equipped with a stack and a set of control locations, and allowing for nondeterministic branches.
Variables can be local or global, and supported types are Boolean or bounded-integer, which is
simulated with multiple Boolean variables. Arrays of variables are also allowed. PDS’s are a lower-
level formalism, essentially pushdown automata. Moped can verify on these models LTL properties,
and perform reachability queries, implementing the algorithms presented in [34]. A second version
of Moped has been developed with a friendlier interface, Remopla, and a Java front-end called
jMoped. It features an automatic abstraction loop based on the CEGAR paradigm to target real
world Java programs [35], but, unlike the first version, it performs only reachability checks. To
cope with the state-space explosion problem, Moped enforces a symbolic representation through
Boolean Decision Diagrams (BDDs).

ERSMs adopt a higher-level procedural approach. [3] presents an algorithm for Reachability
analysis on ERSMs based on a fixpoint computation which is asymptotically slightly better than
translating them into PDS’s. To the best of our knowledge, the only ERSM-based tool that has been
developed is VERA [5], which supports only reachability and fair-cycle detection queries, given a
monitor for an LTL property or a set of target states. In its implementation, it takes a more practical
approach and adapts a nested DFS to the presence of summary transitions; moreover, instead of
encoding the state space with BDDs, it uses an on-the-fly explicit-state automaton representation.

The SLAM toolkit [15] has obtained remarkable results in the verification of procedural pro-
grams, through reachability analysis [14]. To model C programs, it uses the formalism of Boolean

Programs, which are supported by Moped and VERA, too. They are equipped with all the common
imperative control-flow structures, as well as recursive procedures with call-by-value parameter
passing, and a restricted form of control nondeterminism. In Boolean Programs all variables are of
Boolean type. Procedures can return multiple values, and parallel assignment is allowed; however,
there are no arrays. Similarly to the second version of Moped, it implements a cyclic abstraction
refinement technique, where the first step is to generate an overapproximated model of the C pro-
gram to be verified. If an error trace for a desired safety property is found to be spurious, this trace
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is used to refine the overapproximation, and to restart the cycle. In this cycle trace properties are
verified by the reachability checker Bebop [13].

A spontaneous question is then how the performances of the above tools compare with each
other and with POMC; in fact we purposely took inspiration for our benchmarks from the Quick-
Sort algorithm which was introduced and adopted also to check other tools (i.e., MOPED, but VERA
too targeted the buggy QuickSort program [5]). However, VERA is not available online. While the
code base of Moped is publicly available,8 the project has not been maintained in recent years, and
we did not manage to rerun the experiments on the same device we used for the MiniProc ones,
because of the unavailability of some packages. SLAM, instead, is an industrial-level tool that is
available within the Microsoft Static Driver Verifier Research Platform, but is highly specialized at
checking the correct use of Windows APIs. We figure that it could be adapted to check properties
expressible as reachability questions —but only those— in the QuickSort program, and in those
cases we expect high-level performances of the tool.

Hence, we do not offer a comparative evaluation in terms of performances in the few cases where
programs and specifying formulas could be compared; we just draw some qualitative findings.

Our tool, up to certain limits, is extremely fast in finding a counterexample for a formula that
does not hold (with the exception regarding formula Q.7 shown by Figure 20). This is in line with
the general implementation strategy: the early termination and on-the-fly properties are met. In
this regard POMC shows a similar behavior as VERA, with which it shares the search space explo-
ration approach. Moreover, we observe that the increase in complexity and number of automaton
construction rules do not affect the performances when a simple LTL formula is verified, which
was another non-trivial requirement for our implementation effort.

We emphasize, however, that the main comparison must be done, rather than in terms of
performances on comparable benchmarks —if possible— in terms of the generality of verifiable
properties.

None of these formalisms models exceptions and exception-handling constructs, and the only
feature on this matter is the assert statement of Boolean Programs. More importantly, all tools
examined here support (at most) the limited class of LTL specifications, which includes only some
simple properties such as the termination guarantee. They cannot investigate the stack-based be-
havior of these programs, which is the key feature of POTL.9

8 CONCLUSIONS

To the best of our knowledge of the literature, OPLs are the largest family of CFLs that enjoys all
algebraic, logic, and decidability properties needed to apply the classical model-checking schema;
POTL, being FO-complete and therefore equivalent to aperiodic OPLs [60], is the most expressive
temporal logic among the few ones that can express “nested properties” of tree-shaped programs;
the object of this article, the POMC model-checker is the only freely available one performing
such a complete model-checking of pushdown automata against properties expressed in a “nested
temporal logic”.

Thus, on one hand, this article represents the conclusion of a long-standing research aimed
at extending the classic properties connected to the finite-state formalism to a suitable subclass
of pushdown automata; on the other hand, we envision various types of practical tools for auto-
matic verification exploiting the proof of concept obtained from the POMC prototype and the early
experimentation with our benchmarks.

8http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
9The only reference to an implementation of CaRet model checking we could find is [69]. However, the tool downloadable

from the author’s website [67] does not seem to accept CaRet specifications.
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For instance, our approach based on on-the-fly state exploration may be counterproductive for
applications where many “implementations” must be checked against one or few fixed specifica-
tions, possibly for comparative purposes: in such cases pre-computing the complete automaton
for the negation of the POTL formula would leave the rest of the verification with a polynomial
time complexity.

We plan to explore symbolic techniques that brought considerable performance improvements
to model checking of “classical” temporal logics, such as bounded model checking [17] through
SAT or SMT encodings, or methods based on tree-shaped tableaux (and encodings thereof) [41].
The recent proposal of exploiting the antichain approach to formal verification of OPL properties
[48] is also promising.

Finally, it is intriguing to investigate variations of the POTL logic in a parallel way as Com-

putation Tree Logic (CTL), CTL* and other logics for nondeterministic computation have been
obtained as variations of LTL.10

APPENDICES

A OMITTED CORRECTNESS PROOFS OF MODEL CHECKING

Here we report the remaining lemmas and related proofs of the correctness of the model checking
construction of Section 4.

A.1 Chain Next Operators

Lemma A.1 proves the correctness of DR rules for the χ�F operator, while the proof for χ�F is

omitted altogether, because it is very similar to the one for χ�F in Lemma 4.2.

Lemma A.1 (χ�F Operator). Given a finite set of atomic propositions AP , an OP alphabet (P (AP ),
MAP ), and a formula χ�F ψ , let Aφ be the OPA built for a formula φ such that χ�F ψ ∈ Cl(φ); and let

Aφ−χ�
F

ψ be the OPA built as Aφ but using DR \DR (χ�F ψ ) for δ .

Inductive assumption: in all accepting computations ofAφ for each position i in the input wordw

and for each sub-formulaψ ′ ∈ ssubf (χ�F ψ ) we have (w, i ) |= ψ ′ iffψ ′ ∈ Φ
д
c (i ).

Inductive claim I : [I1] A computation ρ of Aφ is accepting if and only if [I2] ρ is accepting for

Aφ−χ�
F

ψ and for each position i in the input word w we have (w, i ) |= χ�F ψ iff χ�F ψ ∈ Φ
д
c (i ).

Proof. We prove two auxiliary claims, based on the following assertions:

— let [A1] be: (w, i ) |= χ�F ψ ;
— let [A2] be: all accepting computations ofAφ bring it from configuration 〈yz,Φд (i ),αγ 〉with

χ�F ψ ∈ Φ
д
c (i ) to a configuration 〈z,Φд (iz ),α ′γ 〉 such that χ�F ψ � Φ

д
p (iz ), |α | = 1 and |α ′ | = 1

if first(y) is read by a shift move, |α ′ | = 2 if it is read by a push move.

We prove that for any word w = #xyz# and positions i = |x | + 1, iz = |xy | + 1 in w , A1 ⇐⇒ A2.
[A1 ⇒ A2]. Suppose χ�F ψ holds in position i , labeled a. Then, a must be the left context of more

than one chain,11 and the word being read must have one of the structures of Figure 12, with n ≥ 1.
Let us call bp , 1 ≤ p ≤ n, the right contexts of those chains that are s.t. a � bp (i.e., all except the
rightmost context of i). There exists an index q, 1 ≤ q ≤ n, such that ψ holds in ibq

, the word
position labeled with bq , and it does not hold in any other ibq′ , for q < q′ ≤ n.

All accepting computations reach a configuration 〈a . . . z,Φд (i ), [f ,Φд (k )]γ 〉, where k < i and
α = [f ,Φд (k )], and χ�F ψ ∈ Φ

д
c (i ), because the OPA guesses that χ�F ψ holds in i . Symbol a is read

10A few steps of such a path have been done with reference to the VPA formalism [6].
11By Property 4 of the χ relation, a chain with contexts in the � relation must be embedded in a composed chain with

contexts in another PR.
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by a shift or a push transition, which leads the OPA to configuration 〈c0
0 . . . z,Φ

д (ic0
0
), μ ′〉, with

μ ′ = α ′γ (as in claim A2), and either α ′ = [a,Φд (i )][f ,Φд (k )] or α ′ = [a,Φд (k )], respectively.
Due to rule (9), we have χ�F ψ ∈ Φ

д
p (ic0

0
) and ζL ∈ Φ

д
p (ic0

0
). As a result, the next move must be a

push, consistently with the hypothesis implying that a is the left context of a chain. Then, starting
with c0

0, the OPA reads the body of the innermost chain whose left context is a, until it reaches its

right context b1. In this process, the topmost stack symbol [c0
0,Φ

д (ic0
0
)] may be updated by shift

transitions reading other terminals c0
p , 1 ≤ p ≤ m0, that are part of the same simple chain as c0

0.
However, it is not popped until b1 is reached, since subchains cause the OPA to only push, pop
and update new stack symbols, but not existing ones. So, the OPA reaches configuration 〈b1 . . . z,
Φ(ib1

), [c0
m0
,Φд (ic0

0
)]μ ′〉, with χ�F ψ ∈ Φ

д
p (ic0

0
).

Suppose, first, q > 1, and that ψ does not hold in b1. Since c0
m0
� b1, the next transition is a

pop. Due to rule (10), it leads the OPA to configuration 〈b1 . . . z,Φ
′(ib1

), μ ′〉 with χ�F ψ ∈ Φ′p (ib1
)

and ζL ∈ Φ′p (ib1
). If, instead, ψ holds in b1, the OPA guesses that it will also hold in a future

position ibp
(possibly p = q), and puts χ�F ψ ∈ Φ′p (ib1

) anyways. The presence of ζL implies the
next move is a push, a requirement that is satisfied because a � b1. So, the OPA transitions to
configuration 〈v1

0 . . . z,Φ(iv1
0
), [b1,Φ

′(ib1
)]μ ′〉. The computation, then, goes on in the same way

for each bp , 1 ≤ p < q. Before bq is read, (and possibly q = 1), the OPA is in configuration

〈bq . . . z,Φ(ibq
), [c

q−1
mq−1,Φ

д (ibq−1
)]μ ′〉, with χ�F ψ ∈ Φ

д
p (ibq−1

). Since c
q−1
mq−1 � bq , a pop transition

brings the OPA to 〈bq . . . z,Φ
′(ibq

), μ ′〉. Since by hypothesisψ ∈ Φc (ibq
), by rule (10) we just have

ζL ∈ Φ′p (ibq
), and the initial guess is verified. Since the topmost stack symbol contains a, and a�bq ,

the next transition is a push, which satisfies the requirement of ζL . Note that χ�F ψ � Φ′p (ibq
), and

the stack is μ ′, which satisfies A2.
[A2 ⇒ A1]. Suppose that during an accepting computation the OPA reaches configuration

〈a . . . z,Φ(i ), [f ,Φд (k )]γ 〉, with k < i and χ�F ψ ∈ Φc (i ). Again, a must be read by either a push
or a shift move. Since ζL is inserted as a pending requirement into the state resulting from this
move, the next transition must be a push, so a is the left context of at least a chain. This chain
has the form of Figure 12. By rule (9), the OPA reaches configuration 〈c0

0 . . . z,Φ
д (ic0

0
),δ〉, with

χ�F ψ , ζL ∈ Φ
д
p (ic0

0
), and μ ′ as in the [A1 ⇒ A2] part after reading a. The stack symbol pushed while

reading c0
0 is [c0

0,Φ
д (ic0

0
)]. The stack size is now greater by one w.r.t. what is required by assertion

A2, so [c0
0,Φ

д (ic0
0
)] must be popped.

This happens when the OPA reaches a symbol e s.t. the terminal symbol in the topmost stack
symbol takes precedence over e . We claim that e must be s.t. a�e and, according to the notation of
Figure 12, e = b1. Suppose by contradiction that, on the contrary, a�e or a�e (so e = d in Figure 12,
in whichn = 0 and c0

m0
precedesd). In this case, after popping [c0

m0
,Φд (ic0

0
)], the automaton reaches

configuration 〈dz,Φ′(id ), μ ′′〉. Since χ�F ψ ∈ Φ
д
p (ic0

0
), by rule (10) we have χ�F ψ ∈ Φ′p (id ), so this

configuration does not satisfy the thesis statement. Moreover, ζL ∈ Φ′p (id ), which requires the next
transition to be a push. But a�d or a�d , and a is the topmost stack symbol, so such a computation
is blocked by rule (4), never reaching a configuration complying with the thesis statement.

So, e = b1, and the OPA reaches configuration 〈b1 . . . z,Φ(ib1
), [c0

m0
,Φд (ic0

0
)]μ ′〉. The subsequent

pop move leads to 〈b1 . . . z,Φ
′(ib1

), μ ′〉.
Suppose ψ ∈ Φc (ib1

). Then, by rule (10) we only have ζL ∈ Φ′p (ib1
), and χ�F ψ � Φ′p (ib1

). This
configuration satisfies claim A2, and since a � b1, a and b1 are the context of a chain, and ψ holds
in b1, we can conclude that χ�F ψ holds in a.

Otherwise, if ψ � Φc (ib1
), by rule (10) we have χ�F ψ , ζL ∈ Φ′p (ib1

). The next transition will

therefore push [b1,Φ
′(ib1

)] onto the stack, again with χ�F ψ as a pending obligation in it. Then,

the same argument done with [c0
0,Φ

д (ic0
0
)] (and its subsequent updates) can be repeated. The only
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way the target configuration of claim A2 can be reached is by reading a position bq , s.t. a �bq , the
terminal in the topmost stack symbol takes precedence from bq (so a and bq are the context of a
chain), andψ ∈ Φc (ibq

), soψ holds in bq . This implies χ�F ψ holds in a.
[I1 ⇒ I2] follows fromA1 ⇒ A2 andAφ−χ �

F
ψ ’s DR rules being a strict subset ofAφ ’s. [I2 ⇒ I1]

again follows from A2 ⇒ A1, and the fact that Φд (iz ) may not contain χ�F ψ , nor do states in α ′, so
rules (9) and (10) may not prevent the computation from reaching a final state. �

A.2 Chain Back Operators

Now, we prove the correctness of rules given in Section 4.1.3 for the χ�P and χ�P operators. The

proof for χ�P is very similar to the one for χ�P and is therefore omitted. The proof for χ�P uses,
again, the left tree of Figure 12, whereas the one for χ�P would use both trees. The proof for χ�P ,
instead, uses Figure 23, which represents many-to-one chains, with the outermost one expanded
on the rightmost non-terminal in its body.

Lemma A.2 (χ�P Operator). Given a finite set of atomic propositions AP , an OP alphabet (P (AP ),
MAP ), and a formula χ�P ψ , let Aφ be the OPA built for a formula φ such that χ�P ψ ∈ Cl(φ); and let

Aφ−χ �
P

ψ be the OPA built as Aφ but using DR \DR (χ�P ψ ) for δ .

Inductive assumption: in all accepting computations ofAφ for each position i in the input wordw

and for each sub-formulaψ ′ ∈ ssubf (χ�P ψ ) we have (w, i ) |= ψ ′ iffψ ′ ∈ Φ
д
c (i ).

Inductive claim I : [I1] A computation ρ of Aφ is accepting if and only if [I2] ρ is accepting for

Aφ−χ �
P

ψ and for each position j in the input word w we have (w, j ) |= χ�P ψ iff χ�P ψ ∈ Φ
д
c (j ).

Proof. We first prove an auxiliary claim based on the following assertions:

— let [A1] be: (w, j ) |= χ�P ψ ;
— let [A2] be: all accepting computations of Aφ bring it from configuration 〈yz,Φд (i ),αγ 〉 to

a configuration 〈z,Φд (iz ), βγ 〉 such that |α | = 1, |β | = 1 if first(y) is read by a shift move,
|β | = 2 if it is read by a push move, and χ�P ψ ∈ Φ

д
c (j ).

We prove that for any word w = #uz# and position j = |u | in w there exists a partition of u = xy,
with y not empty and |x | = i − 1 > 0, such that A1 ⇐⇒ A2.

[A1 ⇒ A2]. Suppose χ�P ψ holds in position j, labeled with d . Then, there exists a position i ,
labeled with a, s.t. χ (i, j ), a � d , and ψ holds in i . Since a and d are the contexts of a chain, w
must have the form of Figure 12 (left). All accepting computations of the OPA reach configuration
〈a . . . z,Φд (i ), [f ,Φд (k )]γ 〉 with k < i before reading a. By the assumption on Aφ , we have ψ ∈
Φ

д
c (i ). a is read by a shift or a push move, bringing the OPA to 〈c0

0 . . . z,Φ
д (ic0

0
), μ〉, with μ = α ′γ ,

and either α ′ = [a,Φд (i )][f ,Φд (k )] or α ′ = [a,Φд (k )], respectively. Due to rule (19), we have
χ�P ψ ∈ Φ

д
p (ic0

0
). After reading c0

0, the OPA reaches configuration 〈v0
0 . . . z,Φ(iv0

0
), [c0

0,Φ
д (ic0

0
)]μ〉.

Then, the automaton proceeds to read the rest of the body delimited by relation χ (i, j ). If i is
the left context of multiple chains, the stack symbol [c0

0,Φ
д (ic0

0
)], containing χ�P ψ as a pending

obligation, is popped before reaching d . Let bp , 1 ≤ p ≤ n, be all labels of positions ibp
s.t. χ (i, ibp

)
and a � bp . It can be proved inductively that, before reading any of such positions, the OPA is in

a configuration 〈bp . . . z,Φ(ibp
), [c

p−1
mp−1
,Φд (ibp−1

)]μ〉, with χ�P ψ ∈ Φ
д
p (ibp−1

). Since c
p−1
mp−1

� bp , the

next move is a pop, leading to a configuration 〈bp . . . z,Φ
′(ibp

), μ〉, with χ�P ψ ∈ Φ′p (ibp
), due to

rule (18). Then, bp is read by a push move because a � bp , so χ�P ψ is again stored in the topmost

stack symbol as a pending obligation, in a configuration 〈vp
0 . . . z,Φ(ivp

1
), [bp ,Φ

′(ibp
)]μ〉. The stack

symbol containing χ�P ψ is only popped in positions bp , or when reaching d , since subchains only
cause the OPA to push and pop new symbols.
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So, configuration 〈dz,Φ(j ), [cn
mn
,Φ′(ibp

)]μ〉 is reached, with χ�P ψ ∈ Φ′p (ibp
) (recall that d labels j,

the last position ofy). Due to rule (18), a pop move leads the OPA to 〈dz,Φ′(j ), μ〉, with χ�P ψ ∈ Φ′p (j ).
Then, since by hypothesis a � d , and a is contained in the topmost stack symbol, d is read by a
shift move. Since this transition is preceded by a pop, we have ζR ∈ Φ′p (j ). So, by rule (16), since

χ�P ψ , ζR ∈ Φ′p (j ), we have χ�P ψ ∈ Φ′c (j ). Finally, the shift move reads d and leads the OPA to 〈z,
Φ(iz ), βγ 〉, with either β = [d,Φд (i )][f ,Φд (k )] or β = [d,Φд (k )], satisfying claim A1.

[A2 ⇒ A1]. Suppose that, while reading w , an accepting computation of the OPA reaches a
configuration 〈dz,Φд (j ), μ〉, where j is the last position of y, labeled with d , and χ�P ψ ∈ Φ

д
c (j ). By

rule (16), we have χ�P ψ , ζR ∈ Φ
д
p (j ). The presence of ζR in Φ

д
p (j ) requires the previous transition to

be a pop, so d is the right context of a chain. Let a, in position i , be its left context. By hypothesis,
the computation proceeds reading d , and by rule (17) it must be read by a shift transition. So, we
have a � d , and w must be of the form of Figure 12 (left). Going back to 〈dz,Φд (j ), μ〉, consider
the pop move leading to this configuration. It starts from configuration 〈dz,Φ(j ), [cn

mn
,Φд (ibn

)]μ〉,
and by rule (18) we have χ�P ψ ∈ Φ

д
p (ibn

).
Consider the move that pushed Φд (ibn

) onto the stack. Suppose it was preceded by a pop move.

Since Φд (ibn
) is the target state of this transition, and χ�P ψ ∈ Φ

д
p (ibn

), by rule (18) χ�P ψ must be
contained as a pending obligation in the popped state as well. So, this obligation is propagated
backwards every time the automaton encounters a position that is the left context of a chain, i.e.,
positions bp , 1 ≤ p ≤ n, in Figure 12. In order to stop the propagation, a push of a state with
χ�P ψ as a pending obligation, preceded by another push or shift move must be encountered. Such

a transition pushes or updates the stack symbol under the one containing χ�P ψ , which means the
left context a s.t. a � d of a chain whose right context is d has been reached. In both cases, the
target state of the push/shift transitions contains χ�P ψ as a pending obligation, so by rule (19)

we haveψ ∈ Φ
д
c (i ). Hence, by the inductive assumption,ψ holds in position i (corresponding to a),

we have i � j and χ (i, j ), which implies χ�P ψ holds in j.
[I1 ⇒ I2] follows fromA1 ⇒ A2 andAφ−χ �

P
ψ ’s DR rules being a strict subset ofAφ ’s. [I2 ⇒ I1]

again follows from A2 ⇒ A1 and the fact that, after j is read, the next state Φд (iz ) may not contain
χ�P ψ (unless ψ holds in j, which however cannot be required by χ�P ψ holding in j), so rules (16)–
(19) may not prevent the computation from reaching a final state. �

Lemma A.3 (χ�P Operator). Given a finite set of atomic propositions AP , an OP alphabet (P (AP ),
MAP ), and a formula χ�P ψ , let Aφ be the OPA built for a formula φ such that χ�P ψ ∈ Cl(φ); and let

Aφ−χ�
P

ψ be the OPA built as Aφ but using DR \DR (χ�P ψ ) for δ .

Inductive assumption: in all accepting computations ofAφ for each position i in the input wordw

and for each sub-formulaψ ′ ∈ ssubf (χ�P ψ ) we have (w, i ) |= ψ ′ iffψ ′ ∈ Φ
д
c (i ).

Inductive claim I : [I1] A computation ρ of Aφ is accepting if and only if [I2] ρ is accepting for

Aφ−χ�
P

ψ and for each position j in the input word w we have (w, j ) |= χ�P ψ iff χ�P ψ ∈ Φ
д
c (j ).

Proof. We first prove an auxiliary claim based on the following assertions:

— let [A1] be: (w, j ) |= χ�P ψ ;
— let [A2] be: all accepting computations of Aφ bring it from configuration 〈yz,Φд (i ),αγ 〉 to

a configuration 〈z,Φд (iz ), βγ 〉 such that |α | = 1, |β | = 1 if first(y) is read by a shift move,
|β | = 2 if it is read by a push move, and χ�P ψ ∈ Φ

д
c (j ), where j is the last position of y.

We prove that for any word w = #xyz# and position j = |xy | in w , A1 ⇐⇒ A2, where i = |x | + 1.
[A1 ⇒ A2]. Suppose χ�P ψ holds in position j. Then, j is the right context of at least two chains,

and the word w has one of the structures of Figure 23, with i being the leftmost context of j. Let
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Fig. 23. The two possible STs of a generic OP word w = xyz (top) expanded on the rightmost non-terminal,
and its flat representation with chains (bottom). Wavy lines are placeholders for frontiers of subtrees or parts
thereof. We have either a � d (top left) or a �d (top right), and bk �d for 1 ≤ k ≤ n. For 1 ≤ k ≤ n, we either

have bk+1 [uk ]bk , or uk is of the form vk
0 c

k
0v

k
1 c

k
1 . . . c

k
mk

vk
mk+1, where ck

p � ck
p+1 for 0 ≤ p < mk , ck

mk
� bk ,

and respectively a�cn
0 and bk+1 �c

k
0 . Moreover, for each 0 ≤ p < mk , eithervk

p+1 = ε or ck
p [vk

p+1]
ck

p+1 ; either

vk
mk+1 = ε or

ck
mk [vk

mk+1]bk , and either vk
0 = ε or bk+1 [vk

0 ]ck
0 (respectively a[vn

0 ]cn
0 ). u0 has the same form,

except v0
m0
= ε and c0

m0
� d . The πi s are placeholders for precedence relations, and they vary depending on

the surrounding terminal characters. Chains that may or may not exist depending on the form of each uk

are not shown by edges (e.g., between a and bn ).

positions ibp
, labeled with bp , 1 ≤ p ≤ n, be all other left contexts of chains sharing j as their right

context. There exists an index q, 1 ≤ q ≤ n, s.t.ψ holds in ibq
.

During an accepting run, the OPA reads w normally, until it reaches bq , with configuration

〈bq . . . z,Φ(ibq
), [c

q
mq
,Φд (icq

0
)][bq+1,Φ

д (i
c

q+1
0

)] . . . μ〉,

with ψ ∈ Φc (ibq
), μ = [a,Φд (k )]γ , with k ≤ i depending on whether a (the label of i) was read

by a push or a shift move. Note that if bq is the only character in its simple chain body (uq = ε in
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Figure 23), then [c
q
mq
,Φд (icq

0
)] is not present on the stack. In this case, bq is read by a push move

instead of a shift. Suppose bq is the left context of one or more chains, besides the one whose right

context is j. In Figure 23, this means v
q−1
0 � ε . Consider the right context of the outermost of such

chains: assume, w.l.o.g., that it is c
q−1
0 (it may as well be bq−1). Since ψ holds in ibq

, χ�P ψ holds

in i
c

q−1
0

. If, instead, v
q−1
0 = ε , then c

q−1
0 is the successor of bq , and �d ψ holds in it. In both cases,

χ�P ψ ∨ �
d ψ holds in i

c
q−1
0

. Since bq � c
q−1
0 , the latter is read by a push transition, pushing stack

symbol [c
q−1
0 ,Φд (i

c
q−1
0

)], with χ�P ψ ∨ �
d ψ ∈ Φ

д
c (i

c
q−1
0

). This symbol remains on stack until d is

reached, although its terminal symbol may be updated. The computation then proceeds normally,

until configuration 〈dz,Φ(q−1) (j ), [bq−1,Φ
д (i

c
q−1
0

)] . . . μ〉 is reached.

Since χ�P ψ ∨ �
d ψ ∈ Φ

д
c (i

c
q−1
0

), by rule (29), the OPA transitions to configuration 〈dz,Φ(q ) (j ),

[bq ,Φ
д (icq

0
)] . . . μ〉 with χ�P ψ ∈ Φ

(q )
p (j ) and ζL, ζ� � Φ

(q )
p (j ). (Note that the next transition must

be a pop, since the topmost stack symbol is bq , and bq � d .) Then, by rule (29), all subsequent
pop transitions propagate χ�P ψ as a pending obligation in the OPA state, until configuration 〈dz,
Φ(n−1) (j ), μ〉, with χ�P ψ ∈ Φ(n−1)

p (j ). Now, the automaton guesses that this is the last pop move,

and the next one will be a push or a shift. So, it transitions to 〈dz,Φ(n) (j ), μ〉, with and ζL ∈ Φ(n)
p (j )

or ζ� ∈ Φ(n)
p (j ), and χ�P ψ ∈ Φ(n)

p (j ), according to rule (28). Also, ζR ∈ Φ(n)
p (j ), because the previous

move was a pop. At this point, d is read by a shift or a push transition, so Φд (j ) = Φ(n) (j ), and
the new stack is βγ with either β = [d,Φд (k )] or β = [d,Φд (j )][a,Φд (k )]. According to rule (27),

χ�P ψ ∈ Φ(n)
c (j ), which satisfies claim A1.

[A2 ⇒ A1]. Suppose the automaton reaches a state Φд (j ) = Φ(n) (j ) s.t. χ�P ψ ∈ Φ
д
c (j ) during

an accepting computation. Position j must be read by either a push or a shift move, so either
ζL ∈ Φ

д
p (j ) or ζ� ∈ Φ

д
p (j ). By rule (27), for the computation to continue, we have ζR ∈ Φ

д
p (j ). So, the

transition leading to state Φ
д
p (j ) must be a pop, and the related word position d is the right context

of a chain. Let Φ(n−1) (j ) be the starting state of this transition. Since χ�P ψ ∈ Φ
д
p (j ), by rule (28) we

have χ�P ψ ∈ Φ(n−1)
p (j ). By rule (26), this transition must be preceded by another pop, so d is the

right context of at least two chains, and the word being read has one of the forms of Figure 23,
with n ≥ 1.

So, before reading d , the OPA performs a pop transition for each inner chain having d as a right
context, i.e., those having bp , 1 ≤ p ≤ n, as left contexts in Figure 23, plus one for the outermost
chain (whose left context is a). By rule (29), χ�P ψ is propagated backwards through such transitions
from the one before d is read, to one in which χ�P ψ ∨ �

�ψ is contained into the popped state.
By rule (26), for the computation to reach such pop transitions, the propagation of χ�P ψ as a pend-

ing obligation must stop. So, the OPA must reach a configuration 〈dz,Φ(q ) (j ), [bq ,Φ
д (icq

0
)] . . . μ〉

with χ�P ψ ∨�
�ψ ∈ Φ

д
c (icq

0
). Note that the following argument also applies to the case in which, in

Figure 23, uq = ε , by substituting bq for c
q
0 . The topmost stack symbol was pushed after configura-

tion 〈cq
0 . . . z,Φ

д (icq
0

), [bq−1,Φ
д (i

c
q−1
0

)] . . . μ〉. We have bq−1 � c
q
0 . If v

q
0 = ε , and c

q
0 is in the position

next to bq−1, ��ψ holds, while ifv
q
0 � ε , since bq−1 [v

q
0 ]c

q
0 is a chain, χ�P ψ holds. Therefore,ψ holds

in bq−1. Since bq−1 � d and χ (ibq−1
, j ), χ�P ψ holds in j.

[I1 ⇒ I2] follows fromA1 ⇒ A2 andAφ−χ�
P

ψ ’s DR rules being a strict subset ofAφ ’s. [I2 ⇒ I1]

again follows from A2 ⇒ A1 and the fact that rules (26) and (27) do not propagate χ�P ψ further
during the transition that reads j, so rules (26)–(29) may not prevent the computation from reaching
a final state. �
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B OMITTED GRAPHS FROM THE EXPERIMENTAL EVALUATION

We report graphs from the experimental evaluation described in Section 7.2 for formulas Q.2–Q.6

in Figures 24–28 and formulas Q.8–Q.10 in Figures 29–30, that have been omitted from the main
text.

Fig. 24. Experimental results on property Q.2. Fig. 25. Experimental results on property Q.3.

Fig. 26. Experimental results on property Q.4. Fig. 27. Experimental results on property Q.5.
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Fig. 28. Experimental results on property Q.6. Fig. 29. Experimental results on property Q.9.

Fig. 30. Experimental results on property Q.10.
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