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Abstract. ArchiTRIO [14] is a formal language, which complements
UML 2.0 concepts with a formal, logic-based notation that allows users
to state system-wide properties, both static and dynamic, including real-
time constraints. In this paper we present the semantics of the core con-
cepts of the ArchiTRIO language. As the core elements of ArchiTRIO
coincide with those of UML 2.0 (operation, interface, port, class), the
semantics of ArchiTRIO provides also a formal definition for the basic
concepts on which UML 2.0 is built.
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1 Introduction

In the last few years, UML [8] has risen to the status of de facto standard for
system modeling in industrial practice. Its appeal originates from a number of
factors such as ease of use and a certain degree of intuitiveness and flexibility in
the notation (probably rooted in the borrowing form previous, well-established
notations), which reduce the effort needed to be able to write UML models to
a minimum. In its 2.0 incarnation, UML includes constructs (e.g., component,
connector, port) that were previously missing, which are necessary for describing
system architectures. Alas, as with the previous versions, UML lack of formality
hampers its applicability to critical systems, where precise and rigorous designs
are of the utmost importance for the correct development of the application.

In [14] we sketched a novel approach to providing UML with the degree
of formality that is necessary for rigorous modeling and verification, one that
hinges on the idea of complementing the UML notation of class and composite
structure diagrams [8] with a temporal logic-based notation. This combination of
UML and logic-based notation results in a formal language, called ArchiTRIO.
[14] presents the ArchiTRIO approach to system modeling, which falls essentially
in the category of lightweight methods [16]; more precisely, ArchiTRIO allows
developers to use standard UML 2.0 notation to describe non-critical aspects of
systems, but it also offers a complementary formal notation, fully integrated with
the UML one, to represent those system aspects that require precise modeling.
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ArchiTRIO, then, adds expressive power to UML diagrams, rather than replacing
or modifying any of them: a user who at first does not need full-blown ArchiTRIO
can start by drawing bare UML class diagrams, and only later, when the need
arises for clarity and precision (especially for temporal constraints), introduce
ArchiTRIO-specific notation.

ArchiTRIO is based upon few selected UML 2.0 constructs especially suited
for describing architectures, it gives them a formal meaning, and precisely defines
their composition. [14] mainly focuses on the principles behind ArchiTRIO and
suggests guidelines for its application. This paper presents in some detail the
semantics of the language. The semantics of ArchiTRIO is given in terms of
HOT (Higher-Order TRIO), which is a higher-order extension of our previous
first-order temporal logic TRIO [4]. We chose to found ArchiTRIO on a higher-
order logic to allow for the concise representation of mechanisms such as the
passing of parameters that have an ArchiTRIO/UML class for a type.

In our opinion, the distinguishing feature of HOT is its simplicity, rooted
in the rigorous application of the principle of identifying the concepts of class
and of abstract data type (see, e.g. [1]), which is seldom completely pursued
in traditional object-oriented languages. Since ArchiTRIO has many concepts
in common with UML (class, port, etc.), providing a semantics for the former
amounts also to giving a formal definition for a number of UML elements.

This paper is structured as follows: Section 2 briefly summarizes the features
of ArchiTRIO presented in [14]; Section 3 provides an overview of HOT and of
its set-theoretic semantics; Section 4 builds upon it to define the semantics of
ArchiTRIO; Section 5 compares the present work with some relevant literature,
and especially with the OCL [7]; finally, Section 6 draws some conclusions and
hints at future works in this area of research.

2 A Brief Overview of ArchiTRIO

In this section, we briefly summarize the ArchiTRIO approach originally pre-
sented in [14], and introduce a simple running example, an access control system
for a building divided into areas having different security levels, which we will
use throughout this article to illustrate the features of ArchiTRIO.

Consider an Access Control System used in one or more corporate buildings
having three different security levels: low, medium, and high. The building may
contain zero or more areas of a given security level. The access control is enforced
essentially through two kinds of entities: a local mechanism based on the concept
of security gate, and a central control connected to a user database.

Figure 1 shows the UML class diagram describing the situation above. It de-
picts a CentralControl class, the main entity which enforces the prescribed se-
curity policy for user access; a UserDB, that is a database containing users’ sen-
sible data and their actual security clearance; and three kinds of Gate classes:
SimpleGate, MediumSecurityGate, and HighSecurityGate, in charge of man-
aging the local access to areas with low, medium, and high security level, re-
spectively. Every gate has a port of type GatePort, while CentralControl has
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inH:HighSecAutProtocol[*]

inM:MedSecAutProtocol[*]
inL:LowSecAutProtocol[*]
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Fig. 1. Access Control System: the high-level class diagram

three different ports, LowSecAutProtocol, MedSecAutProtocol, and HighSec
AutProtocol that are used to communicate with SimpleGates, Medium
SecurityGates, and HighSecurityGates, respectively.

Moving in a top-down fashion, we now define the internal class structure
of the gates (for space reasons, we omit the corresponding diagram; the in-
terested reader can refer to [14]). A SimpleGate is an entity having one or
more BadgeReaders (a subclass of IdRecognizer), managed by a local controller
LC_SimpleGate. Communication between BadgeReader and LC_SimpleGate is
based on the interface LocalControl, implemented by the latter.

A MediumSecurityGate is based on a more sophisticated IdRecognizer, i.e. a
FingerprintsReader, and has an EntrySensor. Analogously to the simple gate,
a medium security gate is supervised by a local controller, LC_MedSecGate, and
communication between the local controller and the sensors is based on the in-
terface LocalControl. The most complex type of gate is the HighSecurityGate:
it consists of two kinds of IdRecognizers, a FingerprintsReader and a
RetinaScanner; an EntrySensor; and a local controller LC_HighSecGate. A high
security gate is opened only after both the user’s fingerprints and retina are suc-
cessfully checked.

Consider now for instance the structure of a high security gate (Figure 2). It
consists of a retina scanner (RS), a fingerprints reader (FR), an entry sensor (ES),
and a local control (LC). Every component is an instance of the correspond-
ing class; LC exchanges data with the sensors by implementing the interface
LocalControl, while communication with the remote central control happens
through a replicated port of type GatePort.

Finally, consider the system high-level architecture (Figure 3). It consists of:
a central control (CC); two low security gates (Entrance and BackDoor); two

HighSecurirtyGate

LocalControl

FR : FingerprintsReader

ES : EntrySensor

LC : LC_HighSecGate

out

RS : RetinaScanner

out:GatePort

 

Fig. 2. Composite structure diagram of a high security gate
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Building

Entrance : SimpleGate

out

CC : CentralControl

inH
inM[2]

inL[2]

Area44 : MediumSecurityGate
out

Area51 : HighSecurityGate

out

BackDoor : SimpleGate

out
AreaX : MediumSecurityGate

out

 

Fig. 3. The building structure: the high-level system architecture

medium security areas and their corresponding gates (AreaX and Area44); and
one high security area reachable through a high security gate (Area51).

This concludes a first simple architectural description of the system, based
exclusively on UML constructs. As we said in the introduction, UML per se does
not precisely define many of the constructs we used for describing our system
here. For instance, it lacks a precise definition of timeouts management and local
control behavior. More generally, we would like to be able to precisely express
a critical property and possibly to verify it. At this point the designer, e.g. of
a critical system, could need something more than plain UML, to add desired
properties and system requirements into its architecture. So ArchiTRIO appears
in the picture: the designer needs a solid formal description of the used concepts
(e.g. class, instance, interface, port, operation, connection, and so on), to state
something more and more precisely of the system, well before implementing it.

The basic ArchiTRIO concepts mirror a subset of the elements one can find
in UML 2.0. The core of the language is the class. A class defines operations
and attributes, and can provide and require interfaces ; ports are groups of re-
quired/provided interfaces, and can be used to define protocols. Classes can
have composite structures, whose parts are connected by connectors. The graph-
ical representation of those concepts that are common to both ArchiTRIO and
UML is the same as in UML. Besides these UML elements, however, ArchiTRIO
includes also concepts derived from temporal logic, which allow users to precisely
define the behavior of a system modeled with ArchiTRIO.

For example, class LC_HighSecGate provides interface LocalControl and
has a port of type GatePort; interface LocalControl defines two operations,
incomingData and personEntered. In addition to the aforementioned UML
port and interface, class LC_HighSecGate includes three logic items, inGate,
lastUser and gate_open. Item inGate is time-independent (TI, meaning that
its value is constant over time), and represents the identifier of the Gate to which
the controller belongs; item lastUser is time-dependent (TD, that is its value
depends on the time instant in which the item is evaluated) and models the data
corresponding to the user who had either his/her fingerprints or his/her retina
scanned; item gate_open, instead, is a state (which means that it is true/false
in intervals of non-null duration), and models the intervals in which the gate is
open.

In addition to the logic items explicitly declared in the class signature, an
ArchiTRIO class includes a number of built-in items, which model the most
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significant features of the UML elements of the class (for example the param-
eters of an operation, an operation invocation, etc.). Then, the axioms of class
LC_HighSecGate predicate over the logic items (explicitly declared or built-in)
of the class to define its precise behavior. Axiom dataRelay shown below, for
example, states that when an invocation of operation incomingData (exported
through interface LocalControl) is received by the controller and the value of
the rawData parameter is pd, within T time units in the future the controller
will invoke (an instance of) operation sendPersData on port out, passing pd
and the value corresponding to item inGate as parameters.

dataRelay:

iD.inv_rec(pd) -> ex out.sPD(WithinF(out.sPD.invoke(pd, inGate), T));

In axiom dataRelay, iD and sPD are variables ranging over all possible in-
vocations of operations incomingData and sendPersData, respectively. Then,
ex out.sPD means that “there exists an invocation of operation sendPersData
(within the scope of port out) such that...”. inv_rec and invoke are built-in
logic items (more precisely events, i.e. predicates that are true only in isolated
time instants) modeling significant events of an operation invocation; in partic-
ular, event iD.inv_rec is true when invocation iD of operation incomingData
is received by the local controller; similarly, event out.sPD.invoke is true when
the controller issues invocation sPD on port out. WithinF is a temporal operator
taken from the TRIO formal language (see [2] for its definition). pd is a variable
of type PersonalData, where PersonalData is an ArchiTRIO class, not shown
here for the sake of brevity, modeling either the badge, or the fingerprints, or
the retina of a user.

Finally, a port is a collection of provided and required interfaces. It can be
used to define a protocol, intended as a combination of invocations of operations
that can be received (from a provided interface) or issued (to a required inter-
face). Thus, an ArchiTRIO port can contain axioms defining the corresponding
protocol in terms of the involved operation invocations. Consider, for example,
port HighSecAutProtocol of Figure 1. It provides interface AccessControl, and
requires one instance of interface FromAccessControl. The port defines the au-
thentication protocol for gates that require that a user authenticates him/herself
through both a fingerprint and a retina scan. More precisely, the two scans can
occur in any order, but always within a maximum delay one from the other for
the authentication to be successful (i.e. for the controller to allow the user to
enter by opening the gate through an openGate command). Further details can
be found in [14].

This concludes our simple and informal overview of ArchiTRIO. The next
sections will cover these concepts more formally.

3 Higher-Order TRIO

Items are the founding elements of the HOT logic. HOT items correspond, in
usual logic lore, to constants, functions or predicates. Items can have arguments
(and return values), which are typed elements. The arguments (and returned
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values) of HOT items can be of any HOT type (see below). For example, we
might define a HOT item it to be a time-dependent (TD) predicate with two
arguments of type T1 and T2:

items: TD it(T1, T2) : boolean;

Items are the building blocks for HOT formulas. HOT formulas are, as usual,
a combination of functions, predicates (that is, items), logical connectors (&, |,
->, <->, not), temporal operators (Dist, Futr, Past, etc.) and quantifiers (all,
ex). For example:

p1(f1, f2(c1)) -> Futr(all x(p2(x)), t);

Notice that every HOT variable (for example c1, x and t in the formula
above) ranges over the values of some type (or domain), which is defined through
a HOT class. A HOT class definition is essentially divided in two parts: the first
part contains the local items; the second part contains the axioms. Axioms are
formulas which model the behavior of the class; that is, they constrain its items.
Given a HOT class, an element of the domain is called an object. The term
object is synonym for instance (of a class) and value (of a type). A HOT object
corresponds also to a model for the corresponding class (or, in TRIO terms, to
a history); essentially, being HOT a temporal logic, an object is a function of
time. As a consequence there is no notion of object creation and destruction as
in operational languages. This approach differs from the usual related literature,
but basically follows and extends the traditional TRIO class-oriented approach
(see [2] for more details).

Modules. TRIO has a primitive notion of module that sharply distinguishes
it from the notion of item: a module is an instance of a class contained in an
instance of another class. HOT instead, thanks to being higher order does not
need such a separation. Rather, it has linguistic constructs that allow one to
obtain the same semantics as TRIO modules in HOT from basic HOT concepts.
Thus, HOT offers the keyword module as a shorthand notation to automatically
introduce the axioms and definitions corresponding to the semantics of TRIO
modules, where essentially a module is represented through a HOT item. As a
brief example, consider a class C containing an array m of n modules of class M:

modules: m[1..n] : M;

This array corresponds in HOT to the following time-independent item:

items: TI m(1..n) : M;

Inheritance. We distinguish two kinds of inheritance: monotonic inheritance,
and free, purely syntactic, inheritance. Monotonic inheritance perfectly matches
the notion of subtyping (in fact it is written C′ subtype of C, or C′ � C):
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1. every item and axiom defined in C is in C′;
2. C′ may add new items;
3. C′ may add new axioms, thus more constraints w.r.t. C.

The subsection about semantics below shows how this simple notion of in-
heritance produces pure subtyping, as, e.g., in [1].

Instead, purely syntactic inheritance (written C′ redefines C) is a free-form
of inheritance: C′ may modify, add, and delete any items and axioms of C.

We introduce both types of inheritance to make HOT a very free kind of logic
language. Nonetheless, in our opinion the correct interpretation of inheritance
is essentially subtyping. Although in this paper we do not deal with method-
ological aspects, we envisage a methodology where the specifier/designer could
start with a class hierarchy in which both kinds of inheritance are used, be-
ing sometimes easier to work with a free form of inheritance, to later obtain,
through some revision steps, a true tree in which only subtyping is used. For
instance, consider the system presented in Section 2. The designer at first writes
class SimpleGate, because it is the simplest kind of gate. Then, she decides to
add another, more complex kind of gate: the MediumSecurityGate. She creates
class MediumSecurityGate using syntactic inheritance from SimpleGate, replac-
ing the BadgeReader component with one of type FingerprintsReader, then
adding a new component of type EntrySensor. Later, rethinking about the rela-
tion between these two classes, she decides to collect all the concepts common in
gates in a new class Gate, of which both SimpleGate and MediumSecurityGate
become subtypes.

Genericity. HOT classes can be parametric with respect to values of classes
and with respect to classes. The header of a generic HOT class has the syntax
class <class_name> ( <par_decls> ) where parameters may be a type name
or a value of a certain type.

Hints of HOT’s Set-Theoretic Semantics. Given an item i of class C, let us
call sig(i) its signature1. Moreover, let us call items(C) the set of items locally
defined in C (e.g., if items(C) = i1, i2, and C′ is a subtype of C that adds a single
new item i3 to C, then items(C′) = i3). Quite naturally, items are interpreted as
(time dependent or independent) constants, functions or predicates, depending
on their signature. Axioms are essentially constraints on the items. Classes are
types, therefore are interpreted as sets of objects. An object x of class C is, in
general, a function of time (τ):

x : τ → �
i∈I

sig(i), where I =
⋃

C′�C

items(C′).

Therefore x.i is interpreted as a projection of the range of x on the component
sig(i). For example, let C be a class with items n of type natural, and s of type
string, with axioms stating that always n = length(s). Let C′ be a subtype of

1 For simplicity, in the following we do not consider homonyms and name clashes.
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C, containing a new item c of type char, and a new axiom which states that
c = s[0]. Then, every object in C or C′ can be interpreted as a function with
signature: τ → natural × string × char. The main difference is that C does
not constrain in any way item c, therefore C′ ⊆ C.

4 The Semantics of ArchiTRIO

We now define the semantics of the core elements of ArchiTRIO on the stage
of HOT: classes (possibly composite), operations, interfaces/ports. For reasons
of brevity, we do not present the full semantics of ArchiTRIO, but only a sig-
nificant subset thereof; the elements presented here, however, should provide a
meaningful enough picture.

4.1 ArchiTRIO Classes

An ArchiTRIO class is a HOT class, and defines a type; then, as in HOT, an
ArchiTRIO object of type AT is an instance (i.e. a value) of class AT.

All ArchiTRIO classes are subtypes (in terms of HOT) of a HOT class
ArchiRootClass; that is, all ArchiTRIO classes implicitly share a common root
class, which thus defines a type that is common to all ArchiTRIO objects. A
class can include operations and attributes. An attribute is, quite naturally, rep-
resented through an item modeling its value, and operations to get/set it. Then,
its semantics does not raise specific issues besides those associated with the
notion of operation.

4.2 Operations

The concept of ArchiTRIO (and, thus, UML) operation is defined through a
HOT class Operation, which captures the core features shared by all operations.
These features can be summed up as: 1) a set of items modeling the key aspects
of an operation invocation (when the client object issues the invocation, when
the server receives it, the parameters associated with the invocation, etc.), and
2) a set of axioms defining the constraints — time-related or not — over the
aforementioned items (for example, the fact that a return must be preceded by
the server object actually receiving the invocation, etc.). HOT class Operation
defining the semantics common to all operations is sketched below.

class Operation

items:

event invoke, inv_rec, reply; ...

axioms:

Response_NC: reply -> SomP(inv_rec);

...

end

Class Operation introduces the logic items modeling the relevant features
of an operation invocation (e.g. the invoke, inv_rec and reply events first in-
troduced in Section 2), and the axioms defining the behavior that is common to
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all invocations. For example, axiom Response_NC defines a necessary condition
for the reply event to occur: an operation invocation can return (occurrence of
the reply event) only if the invocation was previously received by the called ob-
ject (event inv_rec; see [2] for the definition of temporal operator SomP). Every
instance o of class Operation corresponds to a single invocation of an oper-
ation. Then, for any instance o, the corresponding events invoke, reply, etc.
are unique; that is, they can happen only once over the temporal domain. This
property is defined by suitable axioms in HOT class Operation; for instance,
formula invoke_unique states in an obvious way that, if event invoke occurs
now, it cannot occur in any other instant of the temporal domain.

Every invocation is also characterized by a pair of objects: one that issues the
invocation, and one that receives it. This is represented in the HOT semantics
through a pair of items, src and tgt, both constants of type ArchiRootClass,
modeling, respectively, the source of the invocation and its target.

A specific operation (e.g. sendPersData of interface AccessControl) is de-
fined as a subtype of HOT class Operation. For example, class sendPersData
below defines the semantics for the corresponding operation (see [14] for the com-
plete declaration of the operation). Every instance spd of class sendPersData
(i.e. every value of type sendPersData) is an invocation of the corresponding
operation.

class AccessControl.sendPersData

subtype of: Operation;

items:

TI rawData : PersonalData;

TI gate : GateId;

TI partial returned : User;

TI partial raised : UserNonExistentException; ...

axioms: ...

end

The parameters of an operation are represented through constants having
the same type of the parameter. For example parameter rawData of operation
sendPersData corresponds to a constant with the same name in the HOT class
sendPersData; then, given an instance sPD of class sendPersData, sPD.rawData
is the value of parameter rawData for that invocation. Similarly, if an operation
returns a value (resp. raises an exception), this is represented through a con-
stant returned (resp. raised) of the same type as the returned value (resp. raised
exception). Constant item returned is declared as partial, meaning that its
value can be undefined, for example if the invocation ends with an exception
(similarly, item raised is partial since its value is undefined if the invocation
ends correctly). When the instance of an operation appears in a formula, the
server object which it refers to is included, as a prefix, in the term identifying
the instance (if the server object is not included, it defaults to this, i.e., the
current object in which the formula is defined). For example, if sPD is a vari-
able of type sendPersData and ac is a term corresponding to an instance of
a class providing interface AccessControl (that is, operation sendPersData),



390 M. Pradella, M. Rossi, and D. Mandrioli

to refer to an invocation of operation sendPersData on object ac we have to
write ac.sPD (see for example formula dataRelay of class LC_HighSecGate).
This corresponds to stating that the target object of invocation sPD is ac or,
using the HOT semantics, that sPD.tgt = ac.

4.3 Interfaces and Ports

¿From a semantic point of view, an ArchiTRIO interface is a class that exports
operations (and attributes), but cannot include other logic items (such as, for
example, state gate_open of class LC_HighSecGate), nor can be decomposed
into parts (i.e. it cannot be composite, but merely simple). The only possible
associations that an interface can have are a generalization relationship with
other interfaces, and a “provided by” relationship with an ArchiTRIO class; it
cannot, for example, require an interface.

A class providing an interface I is a subtype of HOT class I. ArchiTRIO
allows a class (resp. interface) to provide (resp. specialize) more than one in-
terface. Then, the corresponding HOT class is a subtype of every and each one
of the provided (resp. specialized) interfaces. An ArchiTRIO class requiring an
interface I is a HOT generic (i.e. parametric) class with respect to a parameter
of type I. For example, class RetinaScanner provides interface IdRecognizer
and requires an interface LocalControl. The corresponding HOT class is shown
below.
class RetinaScanner (lc : LocalControl)

subtype of: IdRecognizer; ...

end

As detailed above, HOT class RetinaScanner has one parameter, lc, of type
LocalControl; that is, every object rs of class RetinaScanner must be instan-
tiated with an object providing interface LocalControl. One way to provide an
instance c of a class C requiring an interface I with the necessary instances of I is
by connecting c with an object providing I in a Composite Structure Diagram,
as explained in Section 4.4. A port in ArchiTRIO is a class that provides a (pos-
sibly empty) set of interfaces PI, and requires a (possibly empty) set of interfaces
RI. In addition, an ArchiTRIO port can include a set of axioms, which define a
protocol associated with the port. A port, like an interface, cannot include logic
items, nor be decomposed further into parts; it may specialize another port, but
not other kinds of classifiers (classes and interfaces). Only ArchiTRIO classes
(neither interfaces, nor other ports) may offer a port.

Being an ArchiTRIO class, a port is defined as a HOT class that requires
and provides the corresponding interfaces. For example, the HOT semantics of
port HighSecAutProtocol shown in Figure 1 is the following:

class HighSecAutProtocol (fac : FromAccessControl)

subtype of: AccessControl; ...

end

The HOT semantics of an ArchiTRIO class C that offers a port p of type P
is that of a class having a module p of type P. The multiplicity of every port
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component (i.e. how many instances of a port P an instance of C actually
offers) is a parameter of the class offering it, if it is left open in the class
definition (e.g., when defined as [1..*]). For example, class CentralControl
of Figure 1 has three ports: inH of type HighSecAutProtocol, inM of type
MedSecAutProtocol and inL of type LowSecAutProtocol. The actual multi-
plicity of these ports is decided when class CentralControl is instantiated (for
example in the example of building of Figure 3, instance CC has two instances
each of ports MedSecAutProtocol and LowSecAutProtocol, and one instance of
port HighSecAutProtocol). Then, the HOT semantics of class CentralControl
is the following2:

class CentralControl (N_inH : Natural, N_inM : Natural, N_inL : Natural,

inH_fac : FromAccessControl[1..N_inH], ...)

modules:

inH[1..N_inH]: HighSecAutProtocol(inH_fac);

inM[1..N_inM]: MedSecAutProtocol(...);

inL[1..N_inL]: LowSecAutProtocol(...); ...

end

Note that the number of ports N_inH, N_inM and N_inL are parameters of
class CentralControl, and are set when the class is instantiated.

4.4 Composite Classes

The parts of an ArchiTRIO composite class are defined, in a natural manner,
through HOT modules. For example, the semantics of class HighSecurityGate
of Figure 2 is the following (note the definition of port out as a module of the
class, in accordance to the discussion of Section 4.3):

class HighSecurityGate (out_ac: AccessControl)

modules:

out: GatePort(out_ac);

LC: LC_HighSecGate;

RS: RetinaScanner(LC);

FR: FingerprintsReader(LC);

ES: EntrySensor(LC); ...

end

As shown above, the HOT semantics of a connection between a provided and
a required interface (such as the one between components LC and RS in Figure
2) is that of parameter instantiation. Then, for example, in object RC of class
RetinaScanner (which requires an interface of type LocalControl) parame-
ter lc is instantiated with object LC, which is precisely of type LocalControl
(similarly for object FR and ES). There are two kinds of connectors between
ports. The first one corresponds to the situation in which two ports of the
same kind, one belonging to a composite class, and one belonging to one of
its components, are connected with each other (this is, for example, the case
of ports out of class HighSecurityGate and of its part LC). The second one,
2 Parameter inH fac is a sequence of N inH objects of type FromAccessControl.
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instead, corresponds to the configuration in which a port P providing interfaces
PI1, ..., PIn and requiring interfaces RI1, ..., RIm is connected to a com-
plementary port Pc requiring interfaces PI1, ..., PIn and providing interfaces
RI1, ..., RIm. This second case occurs, for example, in class Building of Fig-
ure 3, where port inH of component CC, which has type HighSecAutProtocol,
is connected to port out of Area51, which has type GatePort; in fact, port
HighSecAutProtocol provides interface AccessControl and requires interface
FromAccessControl, while port GatePort requires interface AccessControl and
provides interface FromAccessControl, and is thus complementary to the for-
mer. Informally, in the first kind of connection between ports (the one exem-
plified by class HighSecurityGate and its part LC) the composite class relays
instantly all signals arriving at the outermost port p_out to the innermost one
p_in (and vice-versa). Then, all traces of port p_out are also traces for p_in.
This corresponds to p_out and p_in actually being the same object. In the
case of class HighSecurityGate, for example, this corresponds to stating that
out = LC.out. The second kind of connection is instead an extended version of
the connection between provided and required interfaces described above. Then,
the connection between components CC and Area51 in class Building has the
following semantics:

class Building ...

modules:

CC: CentralControl(1, 2, 2, [Area51],...);

Area51: HighSecurityGate(CC.inH); ...

end

where [Area51] is a sequence of exactly one object, Area51 (which has type
FromAccessControl, as required by the definition of parameter inH_fac of class
CentralControl above).

5 Related Works

ArchiTRIO is a formal language that includes a number of concepts from UML
2.0, and assigns them a precise semantics. As a consequence, it is related to a
number of works that have appeared in the literature in recent years. In this
section, we take into account some of the aforementioned works, and briefly
analyze how our approach differs from previous ones.

ArchiTRIO is a logic-based language, and indeed the UML notation already
includes a logic language, the Object Constraint Language (OCL) [7]. With re-
spect to OCL, however, ArchiTRIO has larger scope and greater expressiveness.
In fact, OCL is a language for specifying “[...] invariants on classes and types
in the class model [...] pre- and post conditions on Operations and Methods
[...] constraints on operations [...]” [7]. With ArchiTRIO one can express all of
these properties and some more; for example, axiom dataRelay shown in Sec-
tion 2, which defines neither a class invariant, nor a pre/post condition (nor a
constraint) on an operation, but, rather, a dynamic relationship between two dif-
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ferent operations, cannot be expressed as an OCL constraint3. In addition, OCL
expressions are forbidden to “alter the state of the corresponding executing sys-
tem” (i.e. they are side-effect-free), and they can describe the computation of an
operation only if this is side-effect-free (in UML terms, only if it has an isQuery
tag). ArchiTRIO formulas, on the other hand, do not have any of these restric-
tions, and can easily formalize properties such as “as a result of an invocation
of operation Op, the value of attribute A becomes X”.

Also, it is well-known that OCL cannot express real-time constraints. A real-
time extension to OCL has been proposed in [15] to express real-time constraints
on Statecharts. In the approach of [15], real-time OCL formulas can state that,
for example, “if the class is in state X, then on all execution traces of the under-
lying Statechart state Y must follow after no less than T1 and no more that T2
time units” (where T1 and T2 must be either integer constants or the keyword
inf); that is, RT-OCL formulas make sense only when interpreted with respect
to the Statechart associated with the class. ArchiTRIO formulas, instead, are
more expressive as far as temporal constraints are concerned (they allow quan-
tifications over temporal variables, which can range not only over discrete, but
also over continuous temporal domains), and have a higher level of abstraction.
In fact, while RT-OCL formulas refer to a specific computational environment
(i.e. the one given by the Statechart of the enclosing class), ArchiTRIO ones
assume very little (for example that a reply must be preceded by an invoke),
and they themselves define the possible computations of the class they refer to.

[9] presents a formal semantics for object systems with particular emphasis
on how objects react to the stimuli (called requests) coming from other objects.
In addition, it introduces a notion of substitutability between objects based on
behavioral conformity. The present work exhibits some similarities with [9], in
that we also provide a formal semantics for systems composed of communicating
objects, and introduce a notion of subtyping that hinges on the principle that a
subtype can be used wherever a parent type appears (in HOT/ArchiTRIO terms,
it guarantees that the axiom formulas of the parent still hold). Notice, however,
that while [9] refers to state-based specifications (for example ones given through
Statecharts), ArchiTRIO belongs to the category of axiom systems, hence the
two notions of substitutability and subtyping are inherently different, even if
related (the former is based on the concept of trace containement/simulation,
while the latter on the concept of subset/logical implication). In addition, while
[9] basically offers a semantics of Statecharts describing communicating objects,
ArchiTRIO has a wider reach, as it encompasses the definition of the whole
system, in both its structural and dynamic features.

3 One could argue that such a property (minus the real-time constraint) could be
expressed in UML by means of a Statechart or an Activity Diagram. However, this
only highlights the fact that while in ArchiTRIO there is a unique formalism for
all aspects of the model (static and dynamic), basic UML relies on a number of
overlapping views, which often express similar properties and can be difficult to
reconcile with one another.
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How to add formality to existing UML is a widely acknowledged problem. In
this regard, a number of works in the literature have proposed an approach based
on translating UML behavioral diagrams (especially Statecharts and sequence
diagrams) into an existing formalism (be it π-Calculus [10], TRIO [11], Promela
[13], and many others not listed here for the sake of brevity), or, alternatively,
into an ad-hoc model [12]. The ArchiTRIO approach is different in that we do not
translate any UML dynamic diagram into an existing formalism; on the contrary,
we developed a formal language that is integrated into the UML 2.0 notation,
which allows one to precisely describe both the structure and the dynamics of
a system, of its components and their interactions, with particular attention to
their temporal constraints.

Finally, [6] presents an approach to the analysis of system architectures based
on a subset of UML 2.0 concepts and a formal semantics for time-annotated
Statecharts. Again, with respect to this work, the scope of ArchiTRIO is wider,
as it is intended for use in the whole system design phase, from modeling to
verification. In fact, one could see the techniques presented in [6], and associated
notations, as a target model, to be obtained through a suitable method from an
ArchiTRIO design to perform subsequent verification.

6 Conclusions

We presented the semantics of the ArchiTRIO language [14]. Since ArchiTRIO
shares many concepts with UML, its semantics effectively corresponds to a formal
definition of a number of important UML concepts. The semantics of ArchiTRIO
is given in terms of a higher-order temporal logic, HOT, which is endowed with
a notion of subtyping built upon the simple and intuitive concept of subset.

Our further work on the ArchiTRIO language will follow a number of di-
rections. First and foremost, we are currently developing an integrated tool-set,
called TRIDENT, which is based on the Eclipse [3] platform, to support writ-
ing ArchiTRIO models. This tool, of which an early prototype exists, will be
able to import UML diagrams from external tools, both commercial and non-
commercial, and will allow users to add ArchiTRIO-specific details to those parts
of the model that require a greater level of rigor and precision. Secondly, we will
investigate verification techniques (to be supported by TRIDENT) to comple-
ment the modeling features presented in this paper. In this regard, the semantics
of ArchiTRIO in terms of HOT suggests an encoding of ArchiTRIO classes into
the higher-order logic of a theorem prover such as PVS, along the lines already
followed for the TRIO language [5].

The ultimate goal of our research is the development of a complete “UML-
compliant and compatible”, fully tool supported methodology that allows one to
move smoothly from a purely logic high-level specification to architectural design
to implementation through a sequence of refinement steps, the correctness of each
one being rigorously verified by exploiting several complementary methods.
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