9 research outputs found

    Reduced fluorescence versus forward scatter time-of-flight and increased peak versus integral fluorescence ratios indicate receptor clustering in flow cytometry

    No full text
    Abstract Clustering of surface receptors is often required to initiate signal transduction, receptor internalization, and cellular activation. To study the kinetics of clustering, we developed an economic high-throughput method using flow cytometry. The quantification of receptor clustering by flow cytometry is based on the following two observations: first, the fluorescence signal length (FL time-of-flight [ToF]) decreases relative to the forward scatter signal length (FSc-ToF), and second, the peak FL (FL-peak) increases relative to the integral FL (FL-integral) upon clustering of FL-labeled surface receptors. Receptor macroclustering can therefore be quantified using the ratios FL-ToF/FSc-ToF (method ToF) or FL-peak/FL-integral (method Peak). We have used these methods to analyze clustering of two immune receptors known to undergo different conformational and oligomeric states: the BCR and the complement receptor 3 (CR3), on murine splenocytes, purified B cells, and human neutrophils. Engagement of both the BCR and CR3, on immortalized as well as primary murine B cells and human neutrophil, respectively, resulted in decreased FL-ToF/FSc-ToF and increased FL-peak/FL-integral ratios. Manipulation of the actin-myosin cytoskeleton altered BCR clustering which could be measured using the established parameters. To confirm clustering of CR3 on neutrophils, we applied imaging flow cytometry. Because receptor engagement is as a biological process dependent on cell viability, energy metabolism, and temperature, receptor clustering can only be quantified by gating on viable cells under physiological conditions. In summary, with this novel method, receptor clustering on nonadherent cells can easily be monitored by high-throughput conventional flow cytometry.</jats:p

    IL-10-produced by human transitional B-cells down-regulates CD86 expression on B-cells leading to inhibition of CD4<sup>+</sup> T-cell responses

    Get PDF
    A novel subset of human regulatory B-cells has recently been described. They arise from within the transitional B-cell subpopulation and are characterised by the production of IL-10. They appear to be of significant importance in regulating T-cell immunity in vivo. Despite this important function, the molecular mechanisms by which they control T-cell activation are incompletely defined. Here we show that transitional B-cells produced more IL-10 and expressed higher levels of IL-10 receptor after CD40 engagement compared to other B-cell subsets. Furthermore, under this stimulatory condition, CD86 expressed by transitional B-cells was down regulated and T-cell proliferation was reduced. We provide evidence to demonstrate that the down-regulation of CD86 expression by transitional B-cells was due to the autocrine effect of IL-10, which in turn leads to decreased T-cell proliferation and TNF-α production. This analysis was further extended to peripheral B-cells in kidney transplant recipients. We observed that B-cells from patients tolerant to the graft maintained higher IL-10 production after CD40 ligation, which correlates with lower CD86 expression compared to patients with chronic rejection. Hence, the results obtained in this study shed light on a new alternative mechanism by which transitional B-cells inhibit T-cell proliferation and cytokine production

    Increased CD40 ligation and reduced bcr signalling leads to higher il-10 production in b cells from tolerant kidney transplant patients

    No full text
    BACKGROUND: An increased percentage of peripheral transitional B-cells producing IL-10 has been observed in patients tolerant to kidney allografts. In healthy volunteers, the balance between the CD40 and B-cell receptor (BCR) signalling modulated IL-10 production by B-cells, with stimulation via the BCR decreasing CD40-mediated-IL-10 production. In this study, we evaluate whether in tolerant kidney transplant patients the increased IL-10 production by B-cells was due to an altered CD40 and/or BCR signalling. METHODS: B-cells obtained from a new cohort of tolerant renal transplant recipients and those from age- and gender-matched healthy volunteers, were activated via CD40 and BCR, either alone or in combination. RESULTS: In tolerant patients we observed higher percentages of B-cells producing IL-10 after CD40 ligation and higher expression of CD40L on activated T-cells, compared to healthy controls. Furthermore, B-cells from tolerant recipients had reduced ERK signalling following BCR-mediated activation compared to healthy controls. In keeping with this, combining BCR signalling with CD40 ligation did not reduce IL-10 secretion as was observed in healthy control transitional B-cells. CONCLUSION: Altogether our data suggests that the altered response of B-cells in tolerant recipients may contribute to long-term stable graft acceptance

    CD161 expression characterizes a sub-population of human regulatory T cells that produces IL-17 in a STAT3 dependent manner

    Get PDF
    Treg cells are critical for the prevention of autoimmune diseases and are thus prime candidates for cell-based clinical therapy. However, human Treg cells are “plastic”, and are able to produce IL-17 under inflammatory conditions. Here, we identify and characterize the human Treg subpopulation that can be induced to produce IL-17 and identify its mechanisms. We confirm that a subpopulation of human Treg cells produces IL-17 in vitro when activated in the presence of IL-1β, but not IL-6. “IL-17 potential” is restricted to population III (CD4(+)CD25(hi)CD127(lo)CD45RA(−)) Treg cells expressing the natural killer cell marker CD161. We show that these cells are functionally as suppressive and have similar phenotypic/molecular characteristics to other subpopulations of Treg cells and retain their suppressive function following IL-17 induction. Importantly, we find that IL-17 production is STAT3 dependent, with Treg cells from patients with STAT3 mutations unable to make IL-17. Finally, we show that CD161(+) population III Treg cells accumulate in inflamed joints of patients with inflammatory arthritis and are the predominant IL-17-producing Treg-cell population at these sites. As IL-17 production from this Treg-cell subpopulation is not accompanied by a loss of regulatory function, in the context of cell therapy, exclusion of these cells from the cell product may not be necessary

    Comparison of Regulatory T Cells in Hemodialysis Patients and Healthy Controls:Implications for Cell Therapy in Transplantation

    No full text
    BACKGROUND AND OBJECTIVES: Cell-based therapy with natural (CD4(+)CD25(hi)CD127(lo)) regulatory T cells to induce transplant tolerance is now technically feasible. However, regulatory T cells from hemodialysis patients awaiting transplantation may be functionally/numerically defective. Human regulatory T cells are also heterogeneous, and some are able to convert to proinflammatory Th17 cells. This study addresses the suitability of regulatory T cells from hemodialysis patients for cell-based therapy in preparation for the first clinical trials in renal transplant recipients (the ONE Study). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Healthy controls and age- and sex-matched hemodialysis patients without recent illness/autoimmune disease on established, complication-free hemodialysis for a minimum of 6 months were recruited. Circulating regulatory T cells were studied by flow cytometry to compare the regulatory T cell subpopulations. Regulatory T cells from members of each group were compared for suppressive function and plasticity (IL-17–producing capacity) before and after in vitro expansion with and without Rapamycin, using standard assays. RESULTS: Both groups had similar total regulatory T cells and subpopulations I and III. In each subpopulation, regulatory T cells expressed similar levels of the function-associated markers CD27, CD39, HLA-DR, and FOXP3. Hemodialysis regulatory T cells were less suppressive, expanded poorly compared with healthy control regulatory T cells, and produced IL-17 in the absence of Rapamycin. However, Rapamycin efficiently expanded hemodialysis regulatory T cells to a functional and stable cell product. CONCLUSIONS: Rapamycin-based expansion protocols should enable clinical trials of cell-based immunotherapy for the induction of tolerance to renal allografts using hemodialysis regulatory T cells

    Identification in CLL of circulating intraclonal subgroups with varying B-cell receptor expression and function

    No full text
    Chronic lymphocytic leukemia (CLL) is a tumor of circulating B cells, variably stimulated and anergized following exposure to antigen in lymphoid tissues. Downmodulation of surface IgM (sIgM) occurs but expression and signal capacity can recover in vitro, and apparently in vivo during recirculation. We have now dissected individual circulating clones of CLL cases according to sIgM expression level by differential binding to bead-bound anti-IgM. Four clear subgroups (SG1-4) with increasing sIgM were identified in 37/37 cases. Engagement of sIgM induced phosphorylation of PLC?2 and ERK1/2 at levels ranging from very low in SG1 to high in SG4. Phosphorylation was suppressed by the BTK inhibitor ibrutinib. Expression of CXCR4 also increased from SG1 to SG4 but markers of previous activation and proliferation were dominant in SG1. Incubation of whole CLL populations in vitro led to striking increases in CXCR4 expression, as well as recovery of sIgM. Clonal analysis reveals dynamic SGs following presumed antigen stimulation in tissues. SG4 represents a fully recovered, potentially dangerous population equipped to migrate to tissue and to receive a proliferative stimulus. SG1 likely represents a post-mitotic unresponsive "resting" population. The effect of ibrutinib on the small SG4 population may be the critical factor in therapeutic success

    Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes

    No full text
    corecore