67 research outputs found

    Distributional properties of means of random probability measures

    Get PDF
    The present paper provides a review of the results concerning distributional properties of means of random probability measures. Our interest in this topic has originated from inferential problems in Bayesian Nonparametrics. Nonetheless, it is worth noting that these random quantities play an important role in seemingly unrelated areas of research. In fact, there is a wealth of contributions both in the statistics and in the probability literature that we try to summarize in a unified framework. Particular attention is devoted to means of the Dirichlet process given the relevance of the Dirichlet process in Bayesian Nonparametrics. We then present a number of recent contributions concerning means of more general random probability measures and highlight connections with the moment problem, combinatorics, special functions, excursions of stochastic processes and statistical physics.Bayesian Nonparametrics; Completely random measures; Cifarelli-Regazzini identity; Dirichlet process; Functionals of random probability measures; Generalized Stieltjes transform; Neutral to the right processes; Normalized random measures; Posterior distribution; Random means; Random probability measure; Two-parameter Poisson-Dirichlet process

    A moment-matching Ferguson and Klass algorithm

    Get PDF
    Completely random measures (CRM) represent the key building block of a wide variety of popular stochastic models and play a pivotal role in modern Bayesian Nonparametrics. A popular representation of CRMs as a random series with decreasing jumps is due to Ferguson and Klass (1972). This can immediately be turned into an algorithm for sampling realizations of CRMs or more elaborate models involving transformed CRMs. However, concrete implementation requires to truncate the random series at some threshold resulting in an approximation error. The goal of this paper is to quantify the quality of the approximation by a moment-matching criterion, which consists in evaluating a measure of discrepancy between actual moments and moments based on the simulation output. Seen as a function of the truncation level, the methodology can be used to determine the truncation level needed to reach a certain level of precision. The resulting moment-matching \FK algorithm is then implemented and illustrated on several popular Bayesian nonparametric models.Comment: 24 pages, 6 figures, 5 table

    Linear and Quadratic Functionals of RandomHazard rates: an Asymptotic Analysis

    Get PDF
    A popular Bayesian nonparametric approach to survival analysis consists in modeling hazard rates as kernel mixtures driven by a completely random measure. In this paper we derive asymptotic results for linear and quadratic functionals of such random hazard rates. In particular, we prove central limit theorems for the cumulative hazard function and for the path--second moment and path--variance of the hazard rate. Our techniques are based on recently established criteria for the weak convergence of single and double stochastic integrals with respect to Poisson random measures. We illustrate our results by considering specific models involving kernels and random measures commonly exploited in practice.Asymptotics; Bayesian Nonparametrics; Central limit theorem; Path–variance; Random hazard rate; Survival analysis; Completely random measure; Multiple Wiener-Ito integral.

    A Conversation with Eugenio Regazzini

    Get PDF
    Eugenio Regazzini was born on August 12, 1946 in Cremona (Italy), and took his degree in 1969 at the University "L. Bocconi" of Milano. He has held positions at the universities of Torino, Bologna and Milano, and at the University "L. Bocconi" as assistant professor and lecturer from 1974 to 1980, and then professor since 1980. He is currently professor in probability and mathematical statistics at the University of Pavia. In the periods 1989-2001 and 2006-2009 he was head of the Institute for Applications of Mathematics and Computer Science of the Italian National Research Council (C.N.R.) in Milano and head of the Department of Mathematics at the University of Pavia, respectively. For twelve years between 1989 and 2006, he served as a member of the Scientific Board of the Italian Mathematical Union (U.M.I.). In 2007, he was elected Fellow of the IMS and, in 2001, Fellow of the "Istituto Lombardo---Accademia di Scienze e Lettere." His research activity in probability and statistics has covered a wide spectrum of topics, including finitely additive probabilities, foundations of the Bayesian paradigm, exchangeability and partial exchangeability, distribution of functionals of random probability measures, stochastic integration, history of probability and statistics. Overall, he has been one of the most authoritative developers of de Finetti's legacy. In the last five years, he has extended his scientific interests to probabilistic methods in mathematical physics; in particular, he has studied the asymptotic behavior of the solutions of equations, which are of interest for the kinetic theory of gases. The present interview was taken in occasion of his 65th birthday.Comment: Published in at http://dx.doi.org/10.1214/11-STS362 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotics for a Bayesian nonparametric estimator of species variety

    Get PDF
    In Bayesian nonparametric inference, random discrete probability measures are commonly used as priors within hierarchical mixture models for density estimation and for inference on the clustering of the data. Recently, it has been shown that they can also be exploited in species sampling problems: indeed they are natural tools for modeling the random proportions of species within a population thus allowing for inference on various quantities of statistical interest. For applications that involve large samples, the exact evaluation of the corresponding estimators becomes impracticable and, therefore, asymptotic approximations are sought. In the present paper, we study the limiting behaviour of the number of new species to be observed from further sampling, conditional on observed data, assuming the observations are exchangeable and directed by a normalized generalized gamma process prior. Such an asymptotic study highlights a connection between the normalized generalized gamma process and the two-parameter Poisson-Dirichlet process that was previously known only in the unconditional case.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ371 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Models beyond the Dirichlet process

    Get PDF
    Bayesian nonparametric inference is a relatively young area of research and it has recently undergone a strong development. Most of its success can be explained by the considerable degree of flexibility it ensures in statistical modelling, if compared to parametric alternatives, and by the emergence of new and efficient simulation techniques that make nonparametric models amenable to concrete use in a number of applied statistical problems. Since its introduction in 1973 by T.S. Ferguson, the Dirichlet process has emerged as a cornerstone in Bayesian nonparametrics. Nonetheless, in some cases of interest for statistical applications the Dirichlet process is not an adequate prior choice and alternative nonparametric models need to be devised. In this paper we provide a review of Bayesian nonparametric models that go beyond the Dirichlet process.

    A Bayesian nonparametric approach to modeling market share dynamics

    Get PDF
    We propose a flexible stochastic framework for modeling the market share dynamics over time in a multiple markets setting, where firms interact within and between markets. Firms undergo stochastic idiosyncratic shocks, which contract their shares, and compete to consolidate their position by acquiring new ones in both the market where they operate and in new markets. The model parameters can meaningfully account for phenomena such as barriers to entry and exit, fixed and sunk costs, costs of expanding to new sectors with different technologies, competitive advantage among firms. The construction is obtained in a Bayesian framework by means of a collection of nonparametric hierarchical mixtures, which induce the dependence between markets and provide a generalization of the Blackwell-MacQueen Polya urn scheme, which in turn is used to generate a partially exchangeable dynamical particle system. A Markov Chain Monte Carlo algorithm is provided for simulating trajectories of the system, by means of which we perform a simulation study for transitions to different economic regimes. Moreover, it is shown that the infinite-dimensional properties of the system, when appropriately transformed and rescaled, are those of a collection of interacting Fleming-Viot diffusions.Bayesian Nonparametrics; Gibbs sampler; interacting Polya urns; particle system; species sampling models; market dynamics; interacting Fleming-Viot processes

    Bayesian inference with dependent normalized completely random measures

    Get PDF
    The proposal and study of dependent prior processes has been a major research focus in the recent Bayesian nonparametric literature. In this paper, we introduce a flexible class of dependent nonparametric priors, investigate their properties and derive a suitable sampling scheme which allows their concrete implementation. The proposed class is obtained by normalizing dependent completely random measures, where the dependence arises by virtue of a suitable construction of the Poisson random measures underlying the completely random measures. We first provide general distributional results for the whole class of dependent completely random measures and then we specialize them to two specific priors, which represent the natural candidates for concrete implementation due to their analytic tractability: the bivariate Dirichlet and normalized σ\sigma-stable processes. Our analytical results, and in particular the partially exchangeable partition probability function, form also the basis for the determination of a Markov Chain Monte Carlo algorithm for drawing posterior inferences, which reduces to the well-known Blackwell--MacQueen P\'{o}lya urn scheme in the univariate case. Such an algorithm can be used for density estimation and for analyzing the clustering structure of the data and is illustrated through a real two-sample dataset example.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ521 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    On the posterior distribution of classes of random means

    Get PDF
    The study of properties of mean functionals of random probability measures is an important area of research in the theory of Bayesian nonparametric statistics. Many results are now known for random Dirichlet means, but little is known, especially in terms of posterior distributions, for classes of priors beyond the Dirichlet process. In this paper, we consider normalized random measures with independent increments (NRMI's) and mixtures of NRMI. In both cases, we are able to provide exact expressions for the posterior distribution of their means. These general results are then specialized, leading to distributional results for means of two important particular cases of NRMI's and also of the two-parameter Poisson--Dirichlet process.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ200 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    On rates of convergence for posterior distributions in infinite–dimensional models.

    Get PDF
    This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. Crucially, no sieve or entropy measures are required and so rates do not depend on the rate of convergence of the corresponding sieve maximum likelihood estimator. In particular, we improve on current rates for mixture models.Hellinger consistency; mixture of Dirichlet process; posterior distribution; rates of convergence
    corecore